Graf funkce argsinh x
Hyperbolometrické funkce jsou funkce inverzní k funkcím hyperbolickým . Jedná se o funkce argument hyperbolického sinu (argsinh x ), argument hyperbolického kosinu (argcosh x ), argument hyperbolického tangens (argtanh x ) a argument hyperbolického kotangens (argcoth x ).
Argument hyperbolického sinu (argsinh x)
Funkce
y
=
arg
sinh
x
{\displaystyle y=\arg \sinh x}
Definiční obor
x
∈
R
{\displaystyle x\in \mathbb {R} }
Obor hodnot
y
∈
R
{\displaystyle y\in \mathbb {R} }
Parita
Lichá (inverzní funkce k liché funkci je lichá funkce)
Identita
arg
sinh
x
=
ln
(
x
+
x
2
+
1
)
{\displaystyle \arg \sinh x=\ln(x+{\sqrt {x^{2}+1}})}
Argument hyperbolického kosinu (argcosh x)
Funkce
y
=
arg
cosh
x
{\displaystyle y=\arg \cosh x}
Definiční obor
1
≤
x
<
∞
{\displaystyle 1\leq x<\infty }
Obor hodnot
0
≤
y
<
∞
{\displaystyle 0\leq y<\infty }
Parita
Ani lichá ani sudá
Identita
arg
cosh
x
=
ln
(
x
+
x
2
−
1
)
{\displaystyle \arg \cosh x=\ln(x+{\sqrt {x^{2}-1}})}
Argument hyperbolického tangens (argtanh x)
Funkce
y
=
arg
tanh
x
{\displaystyle y=\arg \tanh x}
Definiční obor
−
1
<
x
<
1
{\displaystyle -1<x<1}
resp.
|
x
|
<
1
{\displaystyle |x|<1}
Obor hodnot
y
∈
R
{\displaystyle y\in \mathbb {R} }
Parita
Lichá (inverzní funkce k liché funkci je lichá funkce)
Identita
arg
tanh
x
=
1
2
ln
1
+
x
1
−
x
{\displaystyle \arg \tanh x={\frac {1}{2}}\ln {\frac {1+x}{1-x}}}
Argument hyperbolického kotangens (argcoth x)
Funkce
y
=
arg
coth
x
{\displaystyle y=\arg \coth x}
Definiční obor
|
x
|
>
1
{\displaystyle |x|>1}
Obor hodnot
y
=
R
−
{
0
}
{\displaystyle y=\mathbb {R} -\{0\}}
Parita
Lichá (inverzní funkce k liché funkci je lichá funkce)
Identita
arg
coth
x
=
1
2
ln
x
+
1
x
−
1
{\displaystyle \arg \coth x={\frac {1}{2}}\ln {\frac {x+1}{x-1}}}
Identity
arg
sinh
x
{\displaystyle \arg \sinh x}
=
arg
cosh
x
2
+
1
(
x
≥
0
)
{\displaystyle =\arg \cosh {\sqrt {x^{2}+1}}\ \ \ \ \ \ \ (x\geq 0)}
=
−
arg
cosh
x
2
+
1
(
x
<
0
)
{\displaystyle =-\arg \cosh {\sqrt {x^{2}+1}}\ \ \ \ \ (x<0)}
=
arg
tanh
x
x
2
+
1
{\displaystyle =\arg \tanh {\frac {x}{\sqrt {x^{2}+1}}}}
arg
cosh
x
=
arg
sinh
x
2
−
1
=
arg
tanh
x
2
−
1
x
(
x
≥
0
)
{\displaystyle \arg \cosh x=\arg \sinh {\sqrt {x^{2}-1}}=\arg \tanh {\frac {\sqrt {x^{2}-1}}{x}}\ \ \ \ \ (x\geq 0)}
arg
tanh
x
=
sinh
x
1
−
x
2
(
x
≥
0
)
{\displaystyle \arg \tanh x=\sinh {\frac {x}{\sqrt {1-x^{2}}}}\ \ \ \ \ (x\geq 0)}
arg
tanh
x
{\displaystyle \arg \tanh x}
=
arg
sinh
x
1
−
x
2
(
|
x
|
<
1
)
{\displaystyle =\arg \sinh {\frac {x}{\sqrt {1-x^{2}}}}\ \ \ \ \ \ \ (|x|<1)}
=
arg
cosh
1
1
−
x
2
(
0
≤
x
<
1
)
{\displaystyle =\arg \cosh {\frac {1}{\sqrt {1-x^{2}}}}\ \ \ \ \ (0\leq x<1)}
=
−
arg
cosh
1
1
−
x
2
(
−
1
<
x
≤
0
)
{\displaystyle =-\arg \cosh {\frac {1}{\sqrt {1-x^{2}}}}\ \ \ \ \ (-1<x\leq 0)}
=
arg
coth
1
x
(
−
1
<
x
<
1
,
x
≠
0
)
{\displaystyle =\arg \coth {\frac {1}{x}}\ \ \ \ \ (-1<x<1,x\not =0)}
arg
coth
x
{\displaystyle \arg \coth x}
=
arg
sinh
1
x
2
−
1
(
x
>
1
)
{\displaystyle =\arg \sinh {\frac {1}{\sqrt {x^{2}-1}}}\ \ \ \ \ (x>1)}
=
−
arg
sinh
1
x
2
−
1
(
x
<
−
1
)
{\displaystyle =-\arg \sinh {\frac {1}{\sqrt {x^{2}-1}}}\ \ \ \ \ (x<-1)}
=
arg
cosh
x
x
2
−
1
(
x
>
1
)
{\displaystyle =\arg \cosh {\frac {x}{\sqrt {x^{2}-1}}}\ \ \ \ \ (x>1)}
=
arg
tanh
1
x
(
|
x
|
>
1
)
{\displaystyle =\arg \tanh {\frac {1}{x}}\ \ \ \ \ (|x|>1)}
arg
sinh
x
±
arg
sinh
y
=
arg
sinh
(
x
1
+
y
2
±
y
1
+
x
2
)
{\displaystyle \arg \sinh x\pm \arg \sinh y=\arg \sinh(x{\sqrt {1+y^{2}}}\pm y{\sqrt {1+x^{2}}})}
arg
cosh
x
±
arg
cosh
y
=
arg
cosh
(
x
y
±
(
1
+
x
2
)
(
y
2
−
1
)
)
(
x
≥
1
,
y
≥
1
)
{\displaystyle \arg \cosh x\pm \arg \cosh y=\arg \cosh(xy\pm {\sqrt {(1+x^{2})(y^{2}-1)}})\ \ \ \ \ (x\geq 1,y\geq 1)}
arg
tanh
x
±
arg
tanh
y
=
arg
tanh
x
±
y
1
±
x
y
(
|
x
|
<
1
,
|
y
|
<
1
)
{\displaystyle \arg \tanh x\pm \arg \tanh y=\arg \tanh {\frac {x\pm y}{1\pm xy}}\ \ \ \ \ (|x|<1,|y|<1)}
Derivace
(
arg
sinh
x
)
′
=
1
1
+
x
2
{\displaystyle (\arg \sinh x)'={\frac {1}{\sqrt {1+x^{2}}}}}
(
arg
cosh
x
)
′
=
1
x
2
−
1
(
x
>
1
)
{\displaystyle (\arg \cosh x)'={\frac {1}{\sqrt {x^{2}-1}}}\ \ \ \ \ (x>1)}
(
arg
tanh
x
)
′
=
1
1
−
x
2
(
|
x
|
<
1
)
{\displaystyle (\arg \tanh x)'={\frac {1}{1-x^{2}}}\ \ \ \ \ (|x|<1)}
(
arg
coth
x
)
′
=
1
1
−
x
2
(
|
x
|
>
1
)
{\displaystyle (\arg \coth x)'={\frac {1}{1-x^{2}}}\ \ \ \ \ (|x|>1)}
Integrál
∫
1
1
+
x
2
d
x
=
arg
sinh
x
+
C
{\displaystyle \int {\frac {1}{\sqrt {1+x^{2}}}}{\rm {d}}x=\arg \sinh x+C}
∫
1
x
2
−
1
d
x
=
arg
cosh
x
+
C
(
x
>
1
)
{\displaystyle \int {\frac {1}{\sqrt {x^{2}-1}}}{\rm {d}}x=\arg \cosh x+C\ \ \ \ \ (x>1)}
∫
1
1
−
x
2
d
x
{\displaystyle \int {\frac {1}{1-x^{2}}}{\rm {d}}x}
=
arg
tanh
x
+
C
(
|
x
|
<
1
)
{\displaystyle =\arg \tanh x+C\ \ \ \ \ (|x|<1)}
=
arg
coth
x
+
C
(
|
x
|
>
1
)
{\displaystyle =\arg \coth x+C\ \ \ \ \ (|x|>1)}
Externí odkazy