Bitweiser OperatorIn der Informatik ist ein bitweiser Operator ein Operator, der auf ein oder zwei Bitketten, Bitfeldern, Bitfolgen oder Bitvektoren auf der Ebene der einzelnen Bits angewendet wird. Insbesondere in den Programmiersprachen der C-Familie können Binärzahlen ohne weitere syntaktische Kennzeichnung als Bitfolgen aufgefasst werden. Die zugrundeliegenden Operationen auf den einzelnen Bits sind schaltungstechnisch die allereinfachsten, und alle höheren Operationen lassen sich auf sie zurückführen. Die bitweisen Operationen werden wegen ihrer geringeren Bedeutung für die Geschwindigkeit eines Computersystems jedoch meist weniger durch Optimierung bevorzugt als die komplexeren arithmetischen Operationen wie Addition und Subtraktion. Bitweise OperatorenDie Sprechweise bitweise deutet darauf hin, dass die mehrgliedrigen Eingabeoperanden komponentenweise verarbeitet werden. (Sie können natürlich auch eingliedrig sein.) Man kann davon ausgehen, dass bei zweistelligen Operationen verschieden lange Operanden vom Kompiler als Fehler angesehen werden. In vielen Programmiersprachen der C-Familie wird syntaktisch und semantisch zwischen bitweise (= mehrgliedrig und komponentenweise) und logisch (= boolesch = eine einzige Komponente) unterschieden. Letztere werden wegen der naheliegenden Verwechslungsgefahr in diesem Artikel zusätzlich aufgeführt. NICHTDas bitweise NICHT oder Komplement ist eine einstellige Verknüpfung, die eine logische Negation (Inversion) jedes Bits durchführt. Wird die Bitfolge als Binärzahl aufgefasst, dann ist dies die Bildung des Einerkomplements. Jede NICHT 0111 = 1000 In vielen Programmiersprachen der C-Familie wird das bitweise NICHT als NICHT (bitweise): ~0 = 1 ~1dez = 0dez ~5dez = ~0101bin = 1010bin = 10dez NICHT (logisch): !false = true !true = false !0 = true !1dez = false !5dez = false UND![]() Das bitweise UND wird auf zwei Bitfolgen gleicher Länge angewendet und gibt eine Bitfolge derselben Länge zurück, indem es jeweils Bits an der gleichen Stelle (jeweils das erste Bit, jeweils das zweite Bit usw.) mit einem logischen UND (logische Konjunktion) verknüpft. Bei jedem Paar ist das Ergebnisbit 0101 UND 0011 = 0001 In den mit C verwandten Programmiersprachen wird das bitweise UND durch Das bitweise UND kann verwendet werden, um eine Bitfolge zu maskieren. Dadurch können Teile eines Bitstrings isoliert werden, und man kann ermitteln, ob ein bestimmtes Bit gesetzt ist oder nicht. Beispiel: 0011 Um herauszufinden, ob das dritte Bit gesetzt ist oder nicht, wird darauf ein bitweises UND mit einer Maske angewendet, die an der dritten Position eine 0011 UND 0010 = 0010 Da das Ergebnis nicht Null ist, muss das dritte Bit in der ursprünglichen Bitfolge eine Das bitweise UND kann mit dem bitweisen NICHT kombiniert werden, um Bits zu löschen. Beispielsweise soll in der Bitfolge 0110 das zweite Bit gelöscht (d. h. auf Dies geschieht, indem wir eine invertierte Maske (die Null muss dafür an der Stelle der zu ändernden Ziffer gesetzt werden) auf unsere Bitfolge anwenden. Invertieren können wir mit dem NICHT-Operator. NICHT 0100 = 1011 Danach wird die Bitfolge und die Maske mittels UND-Operator verknüpft: 0110 UND 1011 = 0010 Weiterhin ist es mit dem bitweisen UND möglich, eine Binärzahl modulo 2k zu rechnen, indem man sie mit 2k−1 UND-verknüpft. Dadurch werden alle Bits ab der k-ten Position von rechts auf 0 gesetzt. Beispiel: 17 mod 8 = 1 entspricht 010001 (17) UND 000111 (7 = 8−1) = 000001 ODER![]() Das bitweise ODER wird auf zwei Bitfolgen gleicher Länge angewendet und gibt eine Bitfolge derselben Länge zurück, indem es jeweils Bits an der gleichen Stelle mit einem logischen ODER (logische Disjunktion) verknüpft. Bei jedem Paar ist das Ergebnisbit 0101 ODER 0011 = 0111 In den mit C verwandten Programmiersprachen wird das bitweise ODER durch Das bitweise ODER wird verwendet, wenn mehrere Bits als Flags verwendet werden; die Bits einer einzelnen Binärzahl können jeweils eine eigene boolesche Variable darstellen. Wendet man das bitweise ODER auf einen solchen Binärwert und eine „Maske“ an, die an bestimmten Stellen eine 0010 kann als Liste von vier Flags angesehen werden. Das erste, zweite und vierte Flag sind nicht gesetzt ( 0010 ODER 1000 = 1010 Diese Technik wird eingesetzt, um Speicherplatz zu sparen, wenn Programme sehr viele Boolesche Werte verwalten müssen. XOR![]() Das bitweise exklusive ODER wird auf zwei Bitfolgen der gleichen Länge angewendet und gibt eine Bitfolge derselben Länge zurück, indem es die logische XOR-Operation auf jedem Paar korrespondierender Bits durchführt. Das Ergebnisbit ist 0101 XOR 0011 = 0110 In den mit C verwandten Programmiersprachen wird das bitweise XOR als In der Assemblersprache wird das bitweise XOR gelegentlich eingesetzt, um den Wert eines Prozessorregisters auf Das bitweise XOR kann auch verwendet werden, um Flags in Bitfolgen umzuschalten.
Dazu fasst man den zweiten Operanden als NICHT-„Maske“ auf den ersten Operanden auf, die diejenigen Stellen logisch invertiert, an denen eine 0101 XOR 0011 („Maske“) = 0110 wird das dritte und vierte Flag umgeschaltet. Diese Technik kann eingesetzt werden, um Bitfolgen zu manipulieren, die mehrere boolesche Variablen repräsentieren. Bitweise VerschiebungenBei den bitweisen Verschiebungen (engl. bitwise shift) werden die Bits als einzelne Zeichen an einer bestimmten Bit-Position aufgefasst – und nicht als Paare korrespondierender Bits wie in den oben stehenden Operationen. Dabei bedeutet das Kollektiv der Bits bei der arithmetischen Verschiebung eine Binärzahl oder bei der – etwas elementareren – logischen Verschiebung eine Bitkette (resp. eine vorzeichenlose (engl. unsigned) Binärzahl). Der Hauptunterschied besteht in der Behandlung des eventuellen Vorzeichenbits. Schaltungstechnisch können bitweise Verschiebungen und Rotationen um eine beliebige Stellenanzahl in Form von Barrel-Shiftern realisiert werden. Bei diesen Operationen werden die Binär-Zeichen um eine angegebene Anzahl von Bitpositionen nach links oder rechts verschoben. Die Richtungsangabe wird dabei unabhängig von der Rechnerarchitektur (und deren Endianness) immer in der (big-endian) Standardkonvention des Dualsystems verstanden: Links bedeutet Multiplikation und rechts Division mit einer Zweierpotenz. Register der Prozessoren sowie Datentypen der Programmiersprachen beherbergen eine definierte endliche Anzahl von Bits, weshalb die spezifizierte Anzahl an Bits an einem Ende aus dem Register oder Datum „hinausgeschoben“, während die gleiche Anzahl am anderen Ende „hineingeschoben“ („hereingezogen“) wird. Auf diese Weise induzieren die bitweisen Verschiebungsoperationen eine Adressierung der Bits innerhalb eines Bytes.
Symbolik:
In Sprachen wie C wird für Rechtsverschiebungen abhängig vom Datentyp und ggf. Vorzeichen entweder mit Nullen (unsigned oder nicht-negativ) oder mit Einsen (signed und kleiner als Null) aufgefüllt. Andere Programmiersprachen (wie z. B. Java) verwenden stattdessen einen eigenen Operator 00111100 << 1 = 01111000 00111100 << 2 = 11110000 (signed erzeugt einen arithmetischen Überlauf) 11111100 << 2 = 11110000 (signed ohne arithmetischen Überlauf) 01001111 >> 1 = 00100111 11110000 >> 2 = 11111100 (signed) 11110000 >> 2 = 00111100 (unsigned) 11110000 >>> 2 = 00111100 (signed und unsigned) 01001111 >>> 1 = 00100111 (signed und unsigned) Eine logische (oder arithmetische) Verschiebung um (Bitpositionen) nach links ist äquivalent zu einer Multiplikation mit , sofern keine 1-Bits hinaus- (bzw. in die Vorzeichenposition hinein)geschoben werden (Ganzzahlüberlauf). Eine arithmetische Verschiebung um (Bitpositionen) nach rechts ist äquivalent zu einer Division durch ; hinausgeschobene 1-Bits gehen verloren. 00001100 << 2 = 00110000 Dieses Verfahren stellt somit eine Alternative zur Multiplikation bzw. Division mit Zweierpotenzen dar. Divisionsergebnisse werden abgeschnitten. Ebenfalls ist es möglich, eine n-Bit-Zahl modulo 2k zu rechnen, indem sie um jeweils n–k nach links und wieder nach rechts verschiebt. Etwas schneller noch kann man die modulo-Berechnung über das bitweise UND mit 2k–1 durchführen. Eine Verschiebung um 0 Bitpositionen ändert den Wert nicht („identische Abbildung“). Ist für die Verschiebung um Bitpositionen definiert, dann gilt sowohl für (beidesmal) logische wie für (beidesmal) arithmetische Verschiebungen die „Hintereinanderausführung“: ((xyz) >> m) >> n = (xyz) >> (m+n) (signed und unsigned) ((xyz) << m) << n = (xyz) << (m+n) (signed und unsigned) D. h.: Abgesehen von der Einschränkung über die Maximalzahl der Schiebepositionen, ab der das Verhalten (implementierungsabhängig und) undefiniert sein kann, genügt es, das Verhalten der Schiebeoperationen für eine (einzige) Schiebeposition zu definieren. Logische Verschiebung
Bei einer logischen Verschiebung (engl. logic shift) werden die hinausgeschobenen Bits verworfen und Nullen nachgezogen, unabhängig von Schieberichtung und Vorzeichen. Deshalb sind logische und arithmetische Verschiebung nach links (bis auf die eventuelle Setzung von Flags) identische Operationen. Bei der logischen Verschiebung nach rechts werden jedoch Nullen statt Kopien des Vorzeichenbits eingefügt. Daher wird die logische Verschiebung bei Bitketten oder vorzeichenlosen Binärzahlen eingesetzt, während arithmetische Verschiebungen bei vorzeichenbehafteten Zweierkomplementzahlen verwendet werden. Arithmetische Verschiebung
Im Gegensatz zur logischen Verschiebung hat bei der arithmetischen (manchmal auch algebraischen) Verschiebung (engl. arithmetic shift) das höchstwertige Bit die Rolle des Vorzeichens (in der Darstellung als Zweierkomplement). Der zugrunde liegende Datentyp ist die vorzeichenbehaftete ( 1100 RECHTS-SHIFT um 1 = 1110 0110 LINKS-SHIFT um 1 = 1100 Bei der Rechtsverschiebung wird das niedrigstwertige (das in der konventionellen Binärdarstellung am weitesten „rechts“ stehende, das Einer-) Bit hinausgeschoben und das höchstwertige Bit (MSB), das „Vorzeichenbit“, am hochwertigen („linken“) Ende erneut eingefügt, wodurch das Vorzeichen der Zahl erhalten bleibt. Bei der Linksverschiebung wird eine neue Eine arithmetische Verschiebung um (Bitpositionen) nach links ist äquivalent zu einer Multiplikation mit (sofern kein Überlauf auftritt). Eine arithmetische Verschiebung einer vorzeichenbehafteten ( Zyklische VerschiebungZyklische Verschiebung ohne Übertragsbit
Eine andere Form der bitweisen Verschiebung ist die zyklische Verschiebung (engl. circular shift) oder bitweise Rotation. Bei dieser Operation „rotieren“ die Bits, als ob das linke und das rechte Ende verbunden wären. Das Bit, das hineingeschoben wird, hat denselben Wert wie das Bit, das aus dem Register hinausgeschoben wird. Diese Operation erhält alle existierenden Bits und wird in einigen Verfahren der digitalen Kryptographie eingesetzt, beispielsweise beim AES-Verfahren, von und nach seinen Entwicklern auch „Rijndael“ genannt. In elementarer Form, jedoch nicht auf Bitebene, sondern auf der Basis eines Alphabets, wird sie in der Verschiebechiffre angewendet. Zyklische Verschiebung mit Übertragsbit
Zyklische Verschiebung mit Übertragsbit (engl. rotate through carry) funktioniert ähnlich wie die zyklische Verschiebung ohne Übertragsbit, jedoch werden die beiden Enden des Registers behandelt, als ob sie durch das Übertragsbit getrennt werden. Das Carry-Bit wird in das Register hineingeschoben, das aus dem Register hinausgeschobene Bit wird zum neuen Übertragsbit. Eine einzelne zyklische Verschiebung mit Übertragsbit kann eine logische oder arithmetische Verschiebung um eine Stelle simulieren, wenn das Übertragsbit vorher entsprechend gesetzt wird. Enthält das Übertragsbit beispielsweise eine Zyklische Verschiebung mit Übertragsbit ist besonders nützlich, wenn Verschiebungen mit Zahlen durchgeführt werden, die größer als die Wortbreite des Prozessors sind, weil die Zahl dann in zwei Registern gespeichert wird und das aus einem Register hinausgeschobene Bit in das andere Register hineingeschoben werden muss. Bei zyklischer Verschiebung mit Übertragsbit wird dieses Bit bei der ersten Verschiebung im Übertragsbit „gespeichert“ und bei der nächsten Verschiebung weitergegeben, ohne dass zusätzliche Instruktionen notwendig sind. Verschiebeoperatoren in ProgrammiersprachenC und C++In C, C++ und verwandten Sprachen werden die Verschiebungsoperatoren durch x = y << 2;
weist der Variable In C und C++ verwenden Berechnungen mit vorzeichenlosen Werten logische Verschiebungen; Berechnungen mit vorzeichenbehafteten Werten verhalten sich abhängig von der Implementierung (engl. implementation-defined behavior), sofern der rechte Operand negativ ist, durch einen Linksshift sich das Vorzeichen ändert oder ein negativer Wert einem Rechtsshift unterzogen wird.[1] Ebenso ist das Ergebnis laut C- und C++-Sprachnorm undefiniert, wenn die Anzahl der Bitverschiebungen größer oder gleich der Bitbreite der Rechenarchitektur ist.[2] Wird beispielsweise auf einer 32-Bit-Architektur von Intel-Prozessoren gearbeitet (IA32), so bewirkt eine Verschiebung um 32 Stellen oft gar keine Veränderung des Ergebnisses, d. h. für JavaIn Java sind alle Ganzzahl-Datentypen vorzeichenbehaftet, und die Operatoren ARM-AssemblerIn ARM-Assembler werden die Verschiebungsoperatoren durch AnwendungenObwohl Rechner oft effiziente Befehle zur Ausführung von arithmetischen und logischen Operationen eingebaut haben, können alle diese Operationen auch durch Kombinationen von bitweisen Operatoren und Nullvergleichen durchgeführt werden. Folgender Pseudocode zeigt beispielsweise, wie zwei beliebige Ganzzahlen c := 0 solange b ≠ 0 falls (b und 1) ≠ 0 c := c + a schiebe a um 1 nach links schiebe b um 1 nach rechts return c Der Code führt eine schriftliche Multiplikation im Binärsystem aus, allerdings in der unüblichen Reihenfolge von hinten nach vorne (beginnend mit der letzten Ziffer von Siehe auch: Schriftliche Multiplikation im Binärsystem Eine sehr interessante Anwendung des bitweisen XOR ist die Gewinnstrategie des Nim-Spiels, bei der die Anzahlen sowohl als Binärzahlen wie als Bitketten zu behandeln sind. Siehe auchWeblinks
Einzelnachweise
|
Portal di Ensiklopedia Dunia