Im maschinellen Lernen bezeichnen Kernel-Methoden eine Klasse von Algorithmen zur Mustererkennung. Diese Methoden nutzen sogenannte Kernelfunktionen, welche eine Menge von bekannten Datenpunkten in einen höherdimensionalen Raum transformieren. In diesem neuen Raum sucht die Kernel-Methode nach einer Hyperebene, die die Datenpunkte korrekt klassifiziert. Die Abbildung zum Kernel-Trick veranschaulicht ein einfaches Beispiel. Eine besondere Eigenschaft der Kernelfunktionen ist, dass sie eine implizite Berechnung im höherdimensionalen Raum ermöglichen. Dadurch können Kernel-Methoden bei der Suche nach einer geeigneten Hyperebene hochdimensionale Räume verwenden, ohne die Rechenzeit signifikant zu erhöhen.[1] Bekannte Kernel-Methoden sind unter anderem Support Vector Machines, Gauß-Prozesse und die Kernel-PCA.
Formale Definition Kernel
Dieser Artikel oder Abschnitt bedarf einer grundsätzlichen Überarbeitung. Näheres sollte auf der Diskussionsseite angegeben sein. Bitte hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Sei ein Eingaberaum. Eine Abbildung heißt Kernel, wenn es einen Skalarproduktraum und eine Abbildung in diesen Raum gibt mit: .
heißt Featurespace oder Merkmalsraum, Featuremapping oder Merkmalsabbildung. Ein Kernel ist also eine Möglichkeit, das Skalarprodukt zweier Punkte im Merkmalsraum zu berechnen, ohne die potentiell sehr hochdimensionale Repräsentation explizit ausrechnen zu müssen. Dieses Skalarprodukt im Merkmalsraum kann dann für Klassifizierungsalgorithmen wie Support Vector Machines verwendet werden.
In der Praxis muss der Featurespace nicht explizit bekannt sein, da Kernel durch den Satz von Mercer eine einfache Charakterisierung aufweisen.
Verschiedene Klassen von Kernel-Funktionen
Es gibt verschiedene Arten von Kerneln, die sich zum Teil über Parameter an die gegebene Problemstellung anpassen lassen:
Bei Kernel-Methoden gibt es den Kernel-Trick, mit dem beispielsweise ein linearer Klassifikator erfolgreich auf nicht-linear trennbare Daten angewendet werden kann. Dies wird erreicht, indem die Daten in einen höherdimensionalen Raum transformiert werden, in dem eine bessere lineare Separierbarkeit erwartet wird (siehe Abbildung). Dieser Vorgang kann als eine Form des Feature-Engineering verstanden werden.
Gegeben sei die Abbildung und ein Kernel Dann kann eine SVM mit diesem Kernel K(x , y) die roten und lila Datenpunkte durch eine Hyperebene trennen. Die 2d Trainingspunkte werden durch in den 3d-Raum abgebildet , wo eine trennende Hyperebene leicht gefunden werden kann.
Literatur
Christopher M. Bishop: Pattern Recognition and Machine Learning. Information Science and Statistics, Springer-Verlag, 2008, ISBN 978-0387310732
Nello Cristianini, John Shawe-Taylor: Kernel Methods for Pattern Classification. Cambridge, 2004.
Bernhard Schölkopf, Alex Smola: Learning with Kernels. MIT Press, Cambridge, MA, 2002.
Thomas Hofmann, Bernhard Schölkopf, Alexander J Smola: Kernel methods in machine learning. In: Annals Statistics 36 (3) 2008: 1171–1220. PDF.