Albert–Brauer–Hasse–Noether theorem Theorem in number theory
In algebraic number theory , the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field K which splits over every completion K v is a matrix algebra over K . The theorem is an example of a local-global principle in algebraic number theory and
leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants . It was proved independently by Richard Brauer , Helmut Hasse , and Emmy Noether and by Abraham Adrian Albert .
Statement of the theorem
Let A be a central simple algebra of rank d over an algebraic number field K . Suppose that for any valuation v , A splits over the corresponding local field K v :
A
⊗
K
K
v
≃
M
d
(
K
v
)
.
{\displaystyle A\otimes _{K}K_{v}\simeq M_{d}(K_{v}).}
Then A is isomorphic to the matrix algebra M d (K ).
Applications
Using the theory of Brauer group , one shows that two central simple algebras A and B over an algebraic number field K are isomorphic over K if and only if their completions A v and B v are isomorphic over the completion K v for every v .
Together with the Grunwald–Wang theorem , the Albert–Brauer–Hasse–Noether theorem implies that every central simple algebra over an algebraic number field is cyclic , i.e. can be obtained by an explicit construction from a cyclic field extension L /K .
See also
References
Albert, A.A. ; Hasse, H. (1932), "A determination of all normal division algebras over an algebraic number field", Trans. Amer. Math. Soc. , 34 (3): 722– 726, doi :10.1090/s0002-9947-1932-1501659-x , Zbl 0005.05003
Brauer, R. ; Hasse, H. ; Noether, E. (1932), "Beweis eines Hauptsatzes in der Theorie der Algebren", J. Reine Angew. Math. , 167 : 399– 404, doi :10.1515/crll.1932.167.399
Fenster, D.D.; Schwermer, J. (2005), "Delicate collaboration: Adrian Albert and Helmut Hasse and the Principal Theorem in Division Algebras", Archive for History of Exact Sciences , 59 (4): 349– 379, doi :10.1007/s00407-004-0093-6
Pierce, Richard (1982), Associative algebras , Graduate Texts in Mathematics , vol. 88, New York-Berlin: Springer-Verlag , ISBN 0-387-90693-2 , Zbl 0497.16001
Reiner, I. (2003), Maximal Orders , London Mathematical Society Monographs. New Series, vol. 28, Oxford University Press , p. 276, ISBN 0-19-852673-3 , Zbl 1024.16008
Roquette, Peter (2005), "The Brauer–Hasse–Noether theorem in historical perspective" (PDF) , Schriften der Mathematisch-Naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften , 15 , CiteSeerX 10.1.1.72.4101 , MR 2222818 , Zbl 1060.01009 , retrieved 2009-07-05 Revised version — Roquette, Peter (2013), Contributions to the history of number theory in the 20th century , Heritage of European Mathematics, Zürich: European Mathematical Society , pp. 1– 76, ISBN 978-3-03719-113-2 , Zbl 1276.11001
Albert, Nancy E. (2005), "A3 & His Algebra, iUniverse, ISBN 978-0-595-32817-8
Notes