A sample of blood serum is subjected to a spin probe 16-doxyl stearate. Spin probe molecules bind specifically to albumin molecules where they occupy two main positions:
the relatively spacious hydrophobic area between the protein domains in the interior of the albumin globule.
The spin probe molecules bound on albumin have restricted mobility that changes the EPR spectrum, which reflects characteristics of the protein site where the spin probe is located and allows estimating the conformation of the albumin globule. Some part of the spin probe remains in the serum in the unbound state. The ratio of the fractions of bound and unbound spin probes allows estimating the functional activity of albumin molecules. Analysis of the EPR spectrum allows assessment of the conformation and functional activity of albumin molecules.
The procedure includes mixing a serum sample with a spin probe reagent, incubating the mixture, measuring the EPR spectrum of a serum with a spin probe, and analyzing the EPR spectrum by calculating the conformation and functional indicators of albumin molecules.
Applications
Cancer diagnosis
A specific change to the conformation of albumin molecules[4][5] that is associated with the growth of a malignant tumor is caused by (or associated with) changes in the composition of metabolites carried by serum albumin during the growth of a malignant tumor[6][7](proliferating cancer cells uptake and release metabolites in abnormal quantities).
as a screening test to detect cancer-specific metabolic alterations in patients;
to determine whether the cancer growth has stopped or the disease is progressing;
to determine when cancer treatment is effective or needs to be changed.
Sepsis and toxemia
Reduced functional activity of serum albumin (reduced binding efficacy) is associated with toxemia (an increase in the concentration of toxic molecules in the blood) and is manifested before other clinical symptoms.
Clinical applications:
prognosis and early diagnosis of sepsis (1 to 2 hours after surgery);[13]
^ abKalachyk, A.; Ugolev, I.; Zabello, T.; Voitovich, V. (2014). "Electron Spin Resonance Spectroscopy of Albumin Transport Quality Is a New Test for Diagnosis of Kidney Transplant Acute Rejection.: Abstract# A232". Transplantation. 98: 466. doi:10.1097/00007890-201407151-01549. ISSN0041-1337.
^V.Muravsky; A.Gurachevsky; G.Matthes (2007). "Disease-specific albumin patterns defined by electron spin resonance". Tumor Biol. 28 (suppl. 1). ISSN1423-0380.
^Seidel P, Gurachevsky A, Muravsky V, Schnurr K, Seibt G, Matthes G (2005). "Recognition of malignant processes with neural nets from ESR spectra of serum albumin". Z. Med. Phys. 15 (4): 265–272. doi:10.1078/0939-3889-00263. PMID16422355.
^Gurachevsky, Andrey; Muravskaya, Ekaterina; Gurachevskaya, Tatjana; Smirnova, Lena; Muravsky, Vladimir (2007). "Cancer-Associated Alteration in Fatty Acid Binding to Albumin Studied by Spin-Label Electron Spin Resonance". Cancer Investigation. 25 (6): 378–383. doi:10.1080/07357900701407947. ISSN0735-7907. PMID17882647. S2CID37370861.
^Gelos, Marcos; Hinderberger, Dariush; Welsing, Ellen; Belting, Julia; Schnurr, Kerstin; Mann, Benno (2010). "Analysis of albumin fatty acid binding capacity in patients with benign and malignant colorectal diseases using electron spin resonance (ESR) spectroscopy". International Journal of Colorectal Disease. 25 (1): 119–127. doi:10.1007/s00384-009-0777-0. ISSN0179-1958. PMID19644694. S2CID22005646.
^Gurachevsky, Andrey; Kazmierczak, Steven C.; Jörres, Achim; Muravsky, Vladimir (2008-01-01). "Application of spin label electron paramagnetic resonance in the diagnosis and prognosis of cancer and sepsis". Clinical Chemistry and Laboratory Medicine. 46 (9): 1203–10. doi:10.1515/CCLM.2008.260. ISSN1437-4331. PMID18783341. S2CID10982218.