Alternating algebra

In mathematics, an alternating algebra is a Z-graded algebra for which xy = (−1)deg(x)deg(y)yx for all nonzero homogeneous elements x and y (i.e. it is an anticommutative algebra) and has the further property that x2 = 0 (nilpotence) for every homogeneous element x of odd degree.[1]

Examples

Properties

  • The algebra formed as the direct sum of the homogeneous subspaces of even degree of an anticommutative algebra A is a subalgebra contained in the centre of A, and is thus commutative.
  • An anticommutative algebra A over a (commutative) base ring R in which 2 is not a zero divisor is alternating.[1]

See also

References

  1. ^ a b Nicolas Bourbaki (1998). Algebra I. Springer Science+Business Media. p. 482.


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya