Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive combinatorics is the special case when only the operations of addition and subtraction are involved.
Ben Green explains arithmetic combinatorics in his review of "Additive Combinatorics" by Tao and Vu.[1]
Szemerédi's theorem is a result in arithmetic combinatorics concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured[2] that every set of integers A with positive natural density contains a k term arithmetic progression for every k. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's theorem.
In 2006, Terence Tao and Tamar Ziegler extended the result to cover polynomial progressions.[4] More precisely, given any integer-valued polynomialsP1,..., Pk in one unknown m all with constant term 0, there are infinitely many integers x, m such that x + P1(m), ..., x + Pk(m) are simultaneously prime. The special case when the polynomials are m, 2m, ..., km implies the previous result that there are length k arithmetic progressions of primes.
Bibak, Khodakhast (2013). "Additive combinatorics with a view towards computer science and cryptography". In Borwein, Jonathan M.; Shparlinski, Igor E.; Zudilin, Wadim (eds.). Number Theory and Related Fields: In Memory of Alf van der Poorten. Vol. 43. New York: Springer Proceedings in Mathematics & Statistics. pp. 99–128. arXiv:1108.3790. doi:10.1007/978-1-4614-6642-0_4. ISBN978-1-4614-6642-0. S2CID14979158.
Mann, Henry (1976). Addition Theorems: The Addition Theorems of Group Theory and Number Theory (Corrected reprint of 1965 Wiley ed.). Huntington, New York: Robert E. Krieger Publishing Company. ISBN0-88275-418-1.