Borel graph theoremIn functional analysis, the Borel graph theorem is generalization of the closed graph theorem that was proven by L. Schwartz.[1] The Borel graph theorem shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis.[1] StatementA topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space. The weak dual of a separable Fréchet space and the strong dual of a separable Fréchet–Montel space are Souslin spaces. Also, the space of distributions and all Lp-spaces over open subsets of Euclidean space as well as many other spaces that occur in analysis are Souslin spaces. The Borel graph theorem states:[1]
GeneralizationAn improvement upon this theorem, proved by A. Martineau, uses K-analytic spaces. A topological space is called a if it is the countable intersection of countable unions of compact sets. A Hausdorff topological space is called K-analytic if it is the continuous image of a space (that is, if there is a space and a continuous map of onto ). Every compact set is K-analytic so that there are non-separable K-analytic spaces. Also, every Polish, Souslin, and reflexive Fréchet space is K-analytic as is the weak dual of a Fréchet space. The generalized theorem states:[2]
See also
References
Bibliography
External links |
Portal di Ensiklopedia Dunia