Comparison of programming languages (algebraic data type)
This article compares the syntax for defining and instantiating an algebraic data type (ADT), sometimes also referred to as a tagged union, in various programming languages. Examples of algebraic data typesATSIn ATS, an ADT may be defined with:[1][2] datatype tree =
| Empty of ()
| Node of (int, tree, tree)
And instantiated as: val my_tree = Node(42, Node(0, Empty, Empty), Empty)
Additionally in ATS dataviewtypes are the linear type version of ADTs for the purpose of providing in the setting of manual memory management with the convenience of pattern matching.[3] An example program might look like: (* Alternatively one can use the datavtype keyword *)
dataviewtype int_or_string_vt (bool) =
| String_vt (true) of string
| Int_vt (false) of int
(* Alternatively one can use the vtypedef keyword *)
viewtypedef Int_or_String_vt = [b: bool] int_or_string_vt b
fn print_int_or_string (i_or_s: Int_or_String_vt): void =
case+ i_or_s of
(* ~ indicates i_or_s will be implicitly freed in this case *)
| ~String_vt(s) => println!(s)
(* @ indicates i_or_s must be explicitly freed in this case *)
| @Int_vt(i) => begin
$extfcall(void, "fprintf", stdout_ref, "%d\n", i);
free@i_or_s;
end
implement main0 (): void = let
val string_hello_world = String_vt "Hello, world!"
val int_0 = Int_vt 0
in
print_int_or_string string_hello_world;
print_int_or_string int_0;
(* which prints:
Hello, world!
0
*)
end
CeylonIn Ceylon, an ADT may be defined with:[4] abstract class Tree()
of empty | Node {}
object empty
extends Tree() {}
final class Node(shared Integer val, shared Tree left, shared Tree right)
extends Tree() {}
And instantiated as: value myTree = Node(42, Node(0, empty, empty), empty);
CleanIn Clean, an ADT may be defined with:[5] :: Tree
= Empty
| Node Int Tree Tree
And instantiated as: myTree = Node 42 (Node 0 Empty Empty) Empty
CoqIn Coq, an ADT may be defined with:[6] Inductive tree : Type :=
| empty : tree
| node : nat -> tree -> tree -> tree.
And instantiated as: Definition my_tree := node 42 (node 0 empty empty) empty.
C++In C++, an ADT may be defined with:[7] struct Empty final {};
struct Node final {
int value;
std::unique_ptr<std::variant<Empty, Node>> left;
std::unique_ptr<std::variant<Empty, Node>> right;
};
using Tree = std::variant<Empty, Node>;
And instantiated as: Tree myTree { Node{
42,
std::make_unique<Tree>(Node{
0,
std::make_unique<Tree>(),
std::make_unique<Tree>()
}),
std::make_unique<Tree>()
} };
DartIn Dart, an ADT may be defined with:[8] sealed class Tree {}
final class Empty extends Tree {}
final class Node extends Tree {
final int value;
final Tree left, right;
Node(this.value, this.left, this.right);
}
And instantiated as: final myTree = Node(42, Node(0, Empty(), Empty()), Empty());
ElmIn Elm, an ADT may be defined with:[9] type Tree
= Empty
| Node Int Tree Tree
And instantiated as: myTree = Node 42 (Node 0 Empty Empty) Empty
F#In F#, an ADT may be defined with:[10] type Tree =
| Empty
| Node of int * Tree * Tree
And instantiated as: let myTree = Node(42, Node(0, Empty, Empty), Empty)
F*In F*, an ADT may be defined with:[11] type tree =
| Empty : tree
| Node : value:nat -> left:tree -> right:tree -> tree
And instantiated as: let my_tree = Node 42 (Node 0 Empty Empty) Empty
Free PascalIn Free Pascal (in standard ISO Pascal mode[12]), an ADT may be defined with variant records:[13] {$mode ISO}
program MakeTree;
type TreeKind = (Empty, Node);
PTree = ^Tree;
Tree = record
case Kind: TreeKind of
Empty: ();
Node: (
Value: Integer;
Left, Right: PTree;
);
end;
And instantiated as: var MyTree: PTree;
begin new(MyTree, Node);
with MyTree^ do begin
Value := 42;
new(Left, Node);
with Left^ do begin
Value := 0;
new(Left, Empty);
new(Right, Empty);
end;
new(Right, Empty);
end;
end.
HaskellIn Haskell, an ADT may be defined with:[14] data Tree
= Empty
| Node Int Tree Tree
And instantiated as: myTree = Node 42 (Node 0 Empty Empty) Empty
HaxeIn Haxe, an ADT may be defined with:[15] enum Tree {
Empty;
Node(value:Int, left:Tree, right:Tree);
}
And instantiated as: var myTree = Node(42, Node(0, Empty, Empty), Empty);
HopeIn Hope, an ADT may be defined with:[16] data tree == empty
++ node (num # tree # tree);
And instantiated as: dec mytree : tree;
--- mytree <= node (42, node (0, empty, empty), empty);
IdrisIn Idris, an ADT may be defined with:[17] data Tree
= Empty
| Node Nat Tree Tree
And instantiated as: myTree : Tree
myTree = Node 42 (Node 0 Empty Empty) Empty
JavaIn Java, an ADT may be defined with:[18] sealed interface Tree {
record Empty() implements Tree {}
record Node(int value, Tree left, Tree right) implements Tree {}
}
And instantiated as: var myTree = new Tree.Node(
42,
new Tree.Node(0, new Tree.Empty(), new Tree.Empty()),
new Tree.Empty()
);
JuliaIn Julia, an ADT may be defined with:[19] struct Empty
end
struct Node
value::Int
left::Union{Empty, Node}
right::Union{Empty, Node}
end
const Tree = Union{Empty, Node}
And instantiated as: mytree = Node(42, Node(0, Empty(), Empty()), Empty())
KotlinIn Kotlin, an ADT may be defined with:[20] sealed class Tree {
object Empty : Tree()
data class Node(val value: Int, val left: Tree, val right: Tree) : Tree()
}
And instantiated as: val myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty, Tree.Empty),
Tree.Empty,
)
LimboIn Limbo, an ADT may be defined with:[21] Tree: adt {
pick {
Empty =>
Node =>
value: int;
left: ref Tree;
right: ref Tree;
}
};
And instantiated as: myTree := ref Tree.Node(
42,
ref Tree.Node(0, ref Tree.Empty(), ref Tree.Empty()),
ref Tree.Empty()
);
MercuryIn Mercury, an ADT may be defined with:[22] :- type tree
---> empty
; node(int, tree, tree).
And instantiated as: :- func my_tree = tree.
my_tree = node(42, node(0, empty, empty), empty).
MirandaIn Miranda, an ADT may be defined with:[23] tree ::=
Empty
| Node num tree tree
And instantiated as: my_tree = Node 42 (Node 0 Empty Empty) Empty
NemerleIn Nemerle, an ADT may be defined with:[24] variant Tree
{
| Empty
| Node {
value: int;
left: Tree;
right: Tree;
}
}
And instantiated as: def myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty(), Tree.Empty()),
Tree.Empty(),
);
NimIn Nim, an ADT may be defined with:[25] type
TreeKind = enum
tkEmpty
tkNode
Tree = ref TreeObj
TreeObj = object
case kind: TreeKind
of tkEmpty:
discard
of tkNode:
value: int
left, right: Tree
And instantiated as: let myTree = Tree(kind: tkNode, value: 42,
left: Tree(kind: tkNode, value: 0,
left: Tree(kind: tkEmpty),
right: Tree(kind: tkEmpty)),
right: Tree(kind: tkEmpty))
OCamlIn OCaml, an ADT may be defined with:[26] type tree =
| Empty
| Node of int * tree * tree
And instantiated as: let my_tree = Node (42, Node (0, Empty, Empty), Empty)
OpaIn Opa, an ADT may be defined with:[27] type tree =
{ empty } or
{ node, int value, tree left, tree right }
And instantiated as: my_tree = {
node,
value: 42,
left: {
node,
value: 0,
left: { empty },
right: { empty }
},
right: { empty }
}
OpenCog
In OpenCog, an ADT may be defined with:[28] PureScriptIn PureScript, an ADT may be defined with:[29] data Tree
= Empty
| Node Int Tree Tree
And instantiated as: myTree = Node 42 (Node 0 Empty Empty) Empty
PythonIn Python, an ADT may be defined with:[30][31] from __future__ import annotations
from dataclasses import dataclass
@dataclass
class Empty:
pass
@dataclass
class Node:
value: int
left: Tree
right: Tree
Tree = Empty | Node
And instantiated as: my_tree = Node(42, Node(0, Empty(), Empty()), Empty())
RacketIn Typed Racket, an ADT may be defined with:[32] (struct Empty ())
(struct Node ([value : Integer] [left : Tree] [right : Tree]))
(define-type Tree (U Empty Node))
And instantiated as: (define my-tree (Node 42 (Node 0 (Empty) (Empty)) (Empty)))
ReasonReasonIn Reason, an ADT may be defined with:[33] type Tree =
| Empty
| Node(int, Tree, Tree);
And instantiated as: let myTree = Node(42, Node(0, Empty, Empty), Empty);
ReScriptIn ReScript, an ADT may be defined with:[34] type rec Tree =
| Empty
| Node(int, Tree, Tree)
And instantiated as: let myTree = Node(42, Node(0, Empty, Empty), Empty)
RustIn Rust, an ADT may be defined with:[35] enum Tree {
Empty,
Node(i32, Box<Tree>, Box<Tree>),
}
And instantiated as: let my_tree = Tree::Node(
42,
Box::new(Tree::Node(0, Box::new(Tree::Empty), Box::new(Tree::Empty)),
Box::new(Tree::Empty),
);
ScalaScala 2In Scala 2, an ADT may be defined with:[citation needed] sealed abstract class Tree extends Product with Serializable
object Tree {
final case object Empty extends Tree
final case class Node(value: Int, left: Tree, right: Tree)
extends Tree
}
And instantiated as: val myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty, Tree.Empty),
Tree.Empty
)
Scala 3In Scala 3, an ADT may be defined with:[36] enum Tree:
case Empty
case Node(value: Int, left: Tree, right: Tree)
And instantiated as: val myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty, Tree.Empty),
Tree.Empty
)
Standard MLIn Standard ML, an ADT may be defined with:[37] datatype tree =
EMPTY
| NODE of int * tree * tree
And instantiated as: val myTree = NODE (42, NODE (0, EMPTY, EMPTY), EMPTY)
SwiftIn Swift, an ADT may be defined with:[38] enum Tree {
case empty
indirect case node(Int, Tree, Tree)
}
And instantiated as: let myTree: Tree = .node(42, .node(0, .empty, .empty), .empty)
TypeScriptIn TypeScript, an ADT may be defined with:[39] type Tree =
| { kind: "empty" }
| { kind: "node"; value: number; left: Tree; right: Tree };
And instantiated as: const myTree: Tree = {
kind: "node",
value: 42,
left: {
kind: "node",
value: 0,
left: { kind: "empty" },
right: { kind: "empty" },
},
right: { kind: "empty" },
};
Visual PrologIn Visual Prolog, an ADT may be defined with:[40] domains
tree = empty; node(integer, tree, tree).
And instantiated as: constants
my_tree : tree = node(42, node(0, empty, empty), empty).
ZigIn Zig, an ADT may be defined with:[41] const Tree = union(enum) {
empty,
node: struct {
value: i32,
left: *const Tree,
right: *const Tree,
},
};
And instantiated as: const my_tree: Tree = .{ .node = .{
.value = 42,
.left = &.{ .node = .{
.value = 0,
.left = &.empty,
.right = &.empty,
} },
.right = &.empty,
} };
References
|
Portal di Ensiklopedia Dunia