Geometry of quantum systems (e.g.,
noncommutative geometry and supergeometry ) is mainly
phrased in algebraic terms of modules and
algebras . Connections on modules are
generalization of a linear connection on a smooth vector bundle
E
→
X
{\displaystyle E\to X}
written as a Koszul connection on the
C
∞
(
X
)
{\displaystyle C^{\infty }(X)}
-module of sections of
E
→
X
{\displaystyle E\to X}
.[ 1]
Commutative algebra
Let
A
{\displaystyle A}
be a commutative ring
and
M
{\displaystyle M}
an A -module . There are different equivalent definitions
of a connection on
M
{\displaystyle M}
.[ 2]
First definition
If
k
→
A
{\displaystyle k\to A}
is a ring homomorphism, a
k
{\displaystyle k}
-linear connection is a
k
{\displaystyle k}
-linear morphism
∇
:
M
→
Ω
A
/
k
1
⊗
A
M
{\displaystyle \nabla :M\to \Omega _{A/k}^{1}\otimes _{A}M}
which satisfies the identity
∇
(
a
m
)
=
d
a
⊗
m
+
a
∇
m
{\displaystyle \nabla (am)=da\otimes m+a\nabla m}
A connection extends, for all
p
≥
0
{\displaystyle p\geq 0}
to a unique map
∇
:
Ω
A
/
k
p
⊗
A
M
→
Ω
A
/
k
p
+
1
⊗
A
M
{\displaystyle \nabla :\Omega _{A/k}^{p}\otimes _{A}M\to \Omega _{A/k}^{p+1}\otimes _{A}M}
satisfying
∇
(
ω
⊗
f
)
=
d
ω
⊗
f
+
(
−
1
)
p
ω
∧
∇
f
{\displaystyle \nabla (\omega \otimes f)=d\omega \otimes f+(-1)^{p}\omega \wedge \nabla f}
. A connection is said to be integrable if
∇
∘
∇
=
0
{\displaystyle \nabla \circ \nabla =0}
, or equivalently, if the curvature
∇
2
:
M
→
Ω
A
/
k
2
⊗
M
{\displaystyle \nabla ^{2}:M\to \Omega _{A/k}^{2}\otimes M}
vanishes.
Second definition
Let
D
(
A
)
{\displaystyle D(A)}
be the module of derivations of a ring
A
{\displaystyle A}
. A
connection on an A -module
M
{\displaystyle M}
is defined
as an A -module morphism
∇
:
D
(
A
)
→
D
i
f
f
1
(
M
,
M
)
;
u
↦
∇
u
{\displaystyle \nabla :D(A)\to \mathrm {Diff} _{1}(M,M);u\mapsto \nabla _{u}}
such that the first order differential operators
∇
u
{\displaystyle \nabla _{u}}
on
M
{\displaystyle M}
obey the Leibniz rule
∇
u
(
a
p
)
=
u
(
a
)
p
+
a
∇
u
(
p
)
,
a
∈
A
,
p
∈
M
.
{\displaystyle \nabla _{u}(ap)=u(a)p+a\nabla _{u}(p),\quad a\in A,\quad p\in M.}
Connections on a module over a commutative ring always exist.
The curvature of the connection
∇
{\displaystyle \nabla }
is defined as
the zero-order differential operator
R
(
u
,
u
′
)
=
[
∇
u
,
∇
u
′
]
−
∇
[
u
,
u
′
]
{\displaystyle R(u,u')=[\nabla _{u},\nabla _{u'}]-\nabla _{[u,u']}\,}
on the module
M
{\displaystyle M}
for all
u
,
u
′
∈
D
(
A
)
{\displaystyle u,u'\in D(A)}
.
If
E
→
X
{\displaystyle E\to X}
is a vector bundle, there is one-to-one
correspondence between linear
connections
Γ
{\displaystyle \Gamma }
on
E
→
X
{\displaystyle E\to X}
and the
connections
∇
{\displaystyle \nabla }
on the
C
∞
(
X
)
{\displaystyle C^{\infty }(X)}
-module of sections of
E
→
X
{\displaystyle E\to X}
. Strictly speaking,
∇
{\displaystyle \nabla }
corresponds to
the covariant differential of a
connection on
E
→
X
{\displaystyle E\to X}
.
Graded commutative algebra
The notion of a connection on modules over commutative rings is
straightforwardly extended to modules over a graded
commutative algebra .[ 3] This is the case of
superconnections in supergeometry of
graded manifolds and supervector bundles .
Superconnections always exist.
Noncommutative algebra
If
A
{\displaystyle A}
is a noncommutative ring, connections on left
and right A -modules are defined similarly to those on
modules over commutative rings.[ 4] However
these connections need not exist.
In contrast with connections on left and right modules, there is a
problem how to define a connection on an
R -S -bimodule over noncommutative rings
R and S . There are different definitions
of such a connection.[ 5] Let us mention one of them. A connection on an
R -S -bimodule
P
{\displaystyle P}
is defined as a bimodule
morphism
∇
:
D
(
A
)
∋
u
→
∇
u
∈
D
i
f
f
1
(
P
,
P
)
{\displaystyle \nabla :D(A)\ni u\to \nabla _{u}\in \mathrm {Diff} _{1}(P,P)}
which obeys the Leibniz rule
∇
u
(
a
p
b
)
=
u
(
a
)
p
b
+
a
∇
u
(
p
)
b
+
a
p
u
(
b
)
,
a
∈
R
,
b
∈
S
,
p
∈
P
.
{\displaystyle \nabla _{u}(apb)=u(a)pb+a\nabla _{u}(p)b+apu(b),\quad a\in R,\quad b\in S,\quad p\in P.}
See also
Notes
References
Koszul, Jean-Louis (1950). "Homologie et cohomologie des algèbres de Lie" (PDF) . Bulletin de la Société Mathématique de France . 78 : 65– 127. doi :10.24033/bsmf.1410 .
Koszul, J. L. (1986). Lectures on Fibre Bundles and Differential Geometry (Tata University, Bombay, 1960) . doi :10.1007/978-3-662-02503-1 (inactive 11 July 2025). ISBN 978-3-540-12876-2 . S2CID 51020097 . Zbl 0244.53026 . {{cite book }}
: CS1 maint: DOI inactive as of July 2025 (link )
Bartocci, Claudio; Bruzzo, Ugo; Hernández-Ruipérez, Daniel (1991). The Geometry of Supermanifolds . doi :10.1007/978-94-011-3504-7 . ISBN 978-94-010-5550-5 .
Dubois-Violette, Michel; Michor, Peter W. (1996). "Connections on central bimodules in noncommutative differential geometry". Journal of Geometry and Physics . 20 (2– 3): 218– 232. arXiv :q-alg/9503020 . doi :10.1016/0393-0440(95)00057-7 . S2CID 15994413 .
Landi, Giovanni (1997). An Introduction to Noncommutative Spaces and their Geometries . Lecture Notes in Physics. Vol. 51. arXiv :hep-th/9701078 . doi :10.1007/3-540-14949-X . ISBN 978-3-540-63509-3 . S2CID 14986502 .
Mangiarotti, L.; Sardanashvily, G. (2000). Connections in Classical and Quantum Field Theory . doi :10.1142/2524 . ISBN 978-981-02-2013-6 .
External links
Sardanashvily, G. (2009). "Lectures on Differential Geometry of Modules and Rings". arXiv :0910.1515 [math-ph ].