Covariance operatorIn probability theory, for a probability measure P on a Hilbert space H with inner product , the covariance of P is the bilinear form Cov: H × H → R given by for all x and y in H. The covariance operator C is then defined by (from the Riesz representation theorem, such operator exists if Cov is bounded). Since Cov is symmetric in its arguments, the covariance operator is self-adjoint. Even more generally, for a probability measure P on a Banach space B, the covariance of P is the bilinear form on the algebraic dual B#, defined by where is now the value of the linear functional x on the element z. Quite similarly, the covariance function of a function-valued random element (in special cases is called random process or random field) z is where z(x) is now the value of the function z at the point x, i.e., the value of the linear functional evaluated at z. See also
Further reading
References
|
Portal di Ensiklopedia Dunia