Detrended fluctuation analysis

In stochastic processes, chaos theory and time series analysis, detrended fluctuation analysis (DFA) is a method for determining the statistical self-affinity of a signal. It is useful for analysing time series that appear to be long-memory processes (diverging correlation time, e.g. power-law decaying autocorrelation function) or 1/f noise.

The obtained exponent is similar to the Hurst exponent, except that DFA may also be applied to signals whose underlying statistics (such as mean and variance) or dynamics are non-stationary (changing with time). It is related to measures based upon spectral techniques such as autocorrelation and Fourier transform.

Peng et al. introduced DFA in 1994 in a paper that has been cited over 3,000 times as of 2022[1] and represents an extension of the (ordinary) fluctuation analysis (FA), which is affected by non-stationarities.

Systematic studies of the advantages and limitations of the DFA method were performed by PCh Ivanov et al. in a series of papers focusing on the effects of different types of nonstationarities in real-world signals: (1) types of trends;[2] (2) random outliers/spikes, noisy segments, signals composed of parts with different correlation;[3] (3) nonlinear filters;[4] (4) missing data;[5] (5) signal coarse-graining procedures [6] and comparing DFA performance with moving average techniques [7] (cumulative citations > 4,000).  Datasets generated to test DFA are available on PhysioNet.[8]

Definition

DFA on a Brownian motion process, with increasing values of .

Algorithm

Given: a time series .

Compute its average value .

Sum it into a process . This is the cumulative sum, or profile, of the original time series. For example, the profile of an i.i.d. white noise is a standard random walk.

Select a set of integers, such that , the smallest , the largest , and the sequence is roughly distributed evenly in log-scale: . In other words, it is approximately a geometric progression.[9]

For each , divide the sequence into consecutive segments of length . Within each segment, compute the least squares straight-line fit (the local trend). Let be the resulting piecewise-linear fit.

Compute the root-mean-square deviation from the local trend (local fluctuation):And their root-mean-square is the total fluctuation:

(If is not divisible by , then one can either discard the remainder of the sequence, or repeat the procedure on the reversed sequence, then take their root-mean-square.[10])

Make the log-log plot .[11][12]

Interpretation

A straight line of slope on the log-log plot indicates a statistical self-affinity of form . Since monotonically increases with , we always have .

The scaling exponent is a generalization of the Hurst exponent, with the precise value giving information about the series self-correlations:

  • : anti-correlated
  • : uncorrelated, white noise
  • : correlated
  • : 1/f-noise, pink noise
  • : non-stationary, unbounded
  • : Brownian noise

Because the expected displacement in an uncorrelated random walk of length N grows like , an exponent of would correspond to uncorrelated white noise. When the exponent is between 0 and 1, the result is fractional Gaussian noise.

Pitfalls in interpretation

Though the DFA algorithm always produces a positive number for any time series, it does not necessarily imply that the time series is self-similar. Self-similarity requires the log-log graph to be sufficiently linear over a wide range of . Furthermore, a combination of techniques including maximum likelihood estimation (MLE), rather than least-squares has been shown to better approximate the scaling, or power-law, exponent.[13]

Also, there are many scaling exponent-like quantities that can be measured for a self-similar time series, including the divider dimension and Hurst exponent. Therefore, the DFA scaling exponent is not a fractal dimension, and does not have certain desirable properties that the Hausdorff dimension has, though in certain special cases it is related to the box-counting dimension for the graph of a time series.

Generalizations

The standard DFA algorithm given above removes a linear trend in each segment. If we remove a degree-n polynomial trend in each segment, it is called DFAn, or higher order DFA.[14]

Since is a cumulative sum of , a linear trend in is a constant trend in , which is a constant trend in (visible as short sections of "flat plateaus"). In this regard, DFA1 removes the mean from segments of the time series before quantifying the fluctuation.

Similarly, a degree n trend in is a degree (n-1) trend in . For example, DFA1 removes linear trends from segments of the time series before quantifying the fluctuation, DFA1 removes parabolic trends from , and so on.

The Hurst R/S analysis removes constant trends in the original sequence and thus, in its detrending it is equivalent to DFA1.

Generalization to different moments (multifractal DFA)

DFA can be generalized by computing then making the log-log plot of , If there is a strong linearity in the plot of , then that slope is .[15] DFA is the special case where .

Multifractal systems scale as a function . Essentially, the scaling exponents need not be independent of the scale of the system. In particular, DFA measures the scaling-behavior of the second moment-fluctuations.

Kantelhardt et al. intended this scaling exponent as a generalization of the classical Hurst exponent. The classical Hurst exponent corresponds to for stationary cases, and for nonstationary cases.[15][16][17]

Applications

The DFA method has been applied to many systems, e.g. DNA sequences;[18][19] heartbeat dynamics in sleep and wake,[20]  sleep stages,[21][22] rest and exercise,[23] and across circadian phases;[24][25] locomotor gate and wrist dynamics,[26][27][28][29] neuronal oscillations,[17] speech pathology detection,[30] and animal behavior pattern analysis.[31][32]

Relations to other methods, for specific types of signal

For signals with power-law-decaying autocorrelation

In the case of power-law decaying auto-correlations, the correlation function decays with an exponent : . In addition the power spectrum decays as . The three exponents are related by:[18]

  • and
  • .

The relations can be derived using the Wiener–Khinchin theorem. The relation of DFA to the power spectrum method has been well studied.[33]

Thus, is tied to the slope of the power spectrum and is used to describe the color of noise by this relationship: .

For fractional Gaussian noise

For fractional Gaussian noise (FGN), we have , and thus , and , where is the Hurst exponent. for FGN is equal to .[34]

For fractional Brownian motion

For fractional Brownian motion (FBM), we have , and thus , and , where is the Hurst exponent. for FBM is equal to .[16] In this context, FBM is the cumulative sum or the integral of FGN, thus, the exponents of their power spectra differ by 2.

See also

References

  1. ^ Peng, C.K.; et al. (1994). "Mosaic organization of DNA nucleotides". Phys. Rev. E. 49 (2): 1685–1689. Bibcode:1994PhRvE..49.1685P. doi:10.1103/physreve.49.1685. PMID 9961383. S2CID 3498343.
  2. ^ Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Carpena, Pedro; Eugene Stanley, H. (2001-06-26). "Effect of trends on detrended fluctuation analysis". Physical Review E. 64 (1): 011114. arXiv:physics/0103018. Bibcode:2001PhRvE..64a1114H. doi:10.1103/PhysRevE.64.011114. PMID 11461232.
  3. ^ Chen, Zhi; Ivanov, Plamen Ch.; Hu, Kun; Stanley, H. Eugene (2002-04-08). "Effect of nonstationarities on detrended fluctuation analysis". Physical Review E. 65 (4): 041107. arXiv:physics/0111103. Bibcode:2002PhRvE..65d1107C. doi:10.1103/PhysRevE.65.041107. PMID 12005806.
  4. ^ Chen, Zhi; Hu, Kun; Carpena, Pedro; Bernaola-Galvan, Pedro; Stanley, H. Eugene; Ivanov, Plamen Ch. (2005-01-12). "Effect of nonlinear filters on detrended fluctuation analysis". Physical Review E. 71 (1): 011104. arXiv:cond-mat/0406739. Bibcode:2005PhRvE..71a1104C. doi:10.1103/PhysRevE.71.011104. PMID 15697577.
  5. ^ Ma, Qianli D. Y.; Bartsch, Ronny P.; Bernaola-Galván, Pedro; Yoneyama, Mitsuru; Ivanov, Plamen Ch. (2010-03-02). "Effect of extreme data loss on long-range correlated and anticorrelated signals quantified by detrended fluctuation analysis". Physical Review E. 81 (3): 031101. arXiv:1001.3641. Bibcode:2010PhRvE..81c1101M. doi:10.1103/PhysRevE.81.031101. PMC 3534784. PMID 20365691.
  6. ^ Xu, Yinlin; Ma, Qianli D. Y.; Schmitt, Daniel T.; Bernaola-Galván, Pedro; Ivanov, Plamen Ch. (2011-11-01). "Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals". Physica A: Statistical Mechanics and Its Applications. 390 (23): 4057–4072. arXiv:1002.3834. Bibcode:2011PhyA..390.4057X. doi:10.1016/j.physa.2011.05.015. ISSN 0378-4371. PMC 4226277. PMID 25392599.
  7. ^ Xu, Limei; Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Carbone, Anna; Stanley, H. Eugene (2005-05-06). "Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques". Physical Review E. 71 (5): 051101. arXiv:cond-mat/0408047. Bibcode:2005PhRvE..71e1101X. doi:10.1103/PhysRevE.71.051101. PMID 16089515.
  8. ^ Goldberger, Ary L.; Amaral, Luis A. N.; Glass, Leon; Hausdorff, Jeffrey M.; Ivanov, Plamen Ch.; Mark, Roger G.; Mietus, Joseph E.; Moody, George B.; Peng, Chung-Kang; Stanley, H. Eugene (2000-06-13). "PhysioBank, PhysioToolkit, and PhysioNet". Circulation. 101 (23): e215 – e220. doi:10.1161/01.CIR.101.23.e215. PMID 10851218.
  9. ^ Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim; Mansvelder, Huibert; Linkenkaer-Hansen, Klaus (2012). "Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations". Frontiers in Physiology. 3: 450. doi:10.3389/fphys.2012.00450. ISSN 1664-042X. PMC 3510427. PMID 23226132.
  10. ^ Zhou, Yu; Leung, Yee (2010-06-21). "Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series". Journal of Statistical Mechanics: Theory and Experiment. 2010 (6): P06021. Bibcode:2010JSMTE..06..021Z. doi:10.1088/1742-5468/2010/06/P06021. ISSN 1742-5468. S2CID 119901219.
  11. ^ Peng, C.K.; et al. (1994). "Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series". Chaos. 49 (1): 82–87. Bibcode:1995Chaos...5...82P. doi:10.1063/1.166141. PMID 11538314. S2CID 722880.
  12. ^ Bryce, R.M.; Sprague, K.B. (2012). "Revisiting detrended fluctuation analysis". Sci. Rep. 2: 315. Bibcode:2012NatSR...2..315B. doi:10.1038/srep00315. PMC 3303145. PMID 22419991.
  13. ^ Clauset, Aaron; Rohilla Shalizi, Cosma; Newman, M. E. J. (2009). "Power-Law Distributions in Empirical Data". SIAM Review. 51 (4): 661–703. arXiv:0706.1062. Bibcode:2009SIAMR..51..661C. doi:10.1137/070710111. S2CID 9155618.
  14. ^ Kantelhardt J.W.; et al. (2001). "Detecting long-range correlations with detrended fluctuation analysis". Physica A. 295 (3–4): 441–454. arXiv:cond-mat/0102214. Bibcode:2001PhyA..295..441K. doi:10.1016/s0378-4371(01)00144-3. S2CID 55151698.
  15. ^ a b H.E. Stanley, J.W. Kantelhardt; S.A. Zschiegner; E. Koscielny-Bunde; S. Havlin; A. Bunde (2002). "Multifractal detrended fluctuation analysis of nonstationary time series". Physica A. 316 (1–4): 87–114. arXiv:physics/0202070. Bibcode:2002PhyA..316...87K. doi:10.1016/s0378-4371(02)01383-3. S2CID 18417413. Archived from the original on 2018-08-28. Retrieved 2011-07-20.
  16. ^ a b Movahed, M. Sadegh; et al. (2006). "Multifractal detrended fluctuation analysis of sunspot time series". Journal of Statistical Mechanics: Theory and Experiment. 02.
  17. ^ a b Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus (1 January 2012). "Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations". Frontiers in Physiology. 3: 450. doi:10.3389/fphys.2012.00450. PMC 3510427. PMID 23226132.
  18. ^ a b Buldyrev; et al. (1995). "Long-Range Correlation-Properties of Coding And Noncoding Dna-Sequences- Genbank Analysis". Phys. Rev. E. 51 (5): 5084–5091. Bibcode:1995PhRvE..51.5084B. doi:10.1103/physreve.51.5084. PMID 9963221.
  19. ^ Bunde A, Havlin S (1996). "Fractals and Disordered Systems, Springer, Berlin, Heidelberg, New York". {{cite journal}}: Cite journal requires |journal= (help)
  20. ^ Ivanov, P. Ch; Bunde, A; Amaral, L. A. N; Havlin, S; Fritsch-Yelle, J; Baevsky, R. M; Stanley, H. E; Goldberger, A. L (1999-12-01). "Sleep-wake differences in scaling behavior of the human heartbeat: Analysis of terrestrial and long-term space flight data". Europhysics Letters. 48 (5): 594–600. arXiv:cond-mat/9911073. Bibcode:1999EL.....48..594I. doi:10.1209/epl/i1999-00525-0. PMID 11542917.
  21. ^ Bunde A.; et al. (2000). "Correlated and uncorrelated regions in heart-rate fluctuations during sleep". Phys. Rev. E. 85 (17): 3736–3739. Bibcode:2000PhRvL..85.3736B. doi:10.1103/physrevlett.85.3736. PMID 11030994. S2CID 21568275.
  22. ^ Kantelhardt, Jan W.; Ashkenazy, Yosef; Ivanov, Plamen Ch.; Bunde, Armin; Havlin, Shlomo; Penzel, Thomas; Peter, Jörg-Hermann; Stanley, H. Eugene (2002-05-08). "Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments". Physical Review E. 65 (5): 051908. arXiv:cond-mat/0012390. Bibcode:2002PhRvE..65e1908K. doi:10.1103/PhysRevE.65.051908. PMID 12059594.
  23. ^ Karasik, Roman; Sapir, Nir; Ashkenazy, Yosef; Ivanov, Plamen Ch.; Dvir, Itzhak; Lavie, Peretz; Havlin, Shlomo (2002-12-12). "Correlation differences in heartbeat fluctuations during rest and exercise". Physical Review E. 66 (6): 062902. arXiv:cond-mat/0110554. Bibcode:2002PhRvE..66f2902K. doi:10.1103/PhysRevE.66.062902. PMID 12513330.
  24. ^ Hu, Kun; Ivanov, Plamen Ch.; Hilton, Michael F.; Chen, Zhi; Ayers, R. Timothy; Stanley, H. Eugene; Shea, Steven A. (2004-12-28). "Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior". Proceedings of the National Academy of Sciences. 101 (52): 18223–18227. Bibcode:2004PNAS..10118223H. doi:10.1073/pnas.0408243101. PMC 539796. PMID 15611476.
  25. ^ Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene (2007-12-26). "Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics". Proceedings of the National Academy of Sciences. 104 (52): 20702–20707. Bibcode:2007PNAS..10420702I. doi:10.1073/pnas.0709957104. PMC 2410066. PMID 18093917.
  26. ^ Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L. (2001-12-15). "When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations". Physica A: Statistical Mechanics and Its Applications. Proc. Int. Workshop on Frontiers in the Physics of Complex Systems. 302 (1): 138–147. Bibcode:2001PhyA..302..138H. doi:10.1016/S0378-4371(01)00460-5. ISSN 0378-4371. PMID 12033228.
  27. ^ Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H (2002-12-15). "A stochastic model of human gait dynamics". Physica A: Statistical Mechanics and Its Applications. 316 (1): 662–670. arXiv:cond-mat/0103119. Bibcode:2002PhyA..316..662A. doi:10.1016/S0378-4371(02)01453-X. ISSN 0378-4371.
  28. ^ Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A. (2004-06-01). "Non-random fluctuations and multi-scale dynamics regulation of human activity". Physica A: Statistical Mechanics and Its Applications. 337 (1): 307–318. arXiv:physics/0308011. Bibcode:2004PhyA..337..307H. doi:10.1016/j.physa.2004.01.042. ISSN 0378-4371. PMC 2749944. PMID 15759365.
  29. ^ Ivanov, Plamen Ch.; Ma, Qianli D. Y.; Bartsch, Ronny P.; Hausdorff, Jeffrey M.; Nunes Amaral, Luís A.; Schulte-Frohlinde, Verena; Stanley, H. Eugene; Yoneyama, Mitsuru (2009-04-21). "Levels of complexity in scale-invariant neural signals". Physical Review E. 79 (4): 041920. Bibcode:2009PhRvE..79d1920I. doi:10.1103/PhysRevE.79.041920. PMC 6653582. PMID 19518269.
  30. ^ Little, M.; McSharry, P.; Moroz, I.; Roberts, S. (2006). "Nonlinear, Biophysically-Informed Speech Pathology Detection" (PDF). 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings. Vol. 2. pp. II-1080 – II-1083. doi:10.1109/ICASSP.2006.1660534. ISBN 1-4244-0469-X. S2CID 11068261.
  31. ^ Bogachev, Mikhail I.; Lyanova, Asya I.; Sinitca, Aleksandr M.; Pyko, Svetlana A.; Pyko, Nikita S.; Kuzmenko, Alexander V.; Romanov, Sergey A.; Brikova, Olga I.; Tsygankova, Margarita; Ivkin, Dmitry Y.; Okovityi, Sergey V.; Prikhodko, Veronika A.; Kaplun, Dmitrii I.; Sysoev, Yuri I.; Kayumov, Airat R. (March 2023). "Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data". Biomedical Signal Processing and Control. 81: 104409. doi:10.1016/j.bspc.2022.104409. S2CID 254206934.
  32. ^ Hu, K.; Scheer, F. A. J. L.; Ivanov, P. Ch.; Buijs, R. M.; Shea, S. A. (2007-11-09). "The suprachiasmatic nucleus functions beyond circadian rhythm generation". Neuroscience. 149 (3): 508–517. doi:10.1016/j.neuroscience.2007.03.058. ISSN 0306-4522. PMC 2759975. PMID 17920204.
  33. ^ Heneghan; et al. (2000). "Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes". Phys. Rev. E. 62 (5): 6103–6110. Bibcode:2000PhRvE..62.6103H. doi:10.1103/physreve.62.6103. PMID 11101940. S2CID 10791480.
  34. ^ Taqqu, Murad S.; et al. (1995). "Estimators for long-range dependence: an empirical study". Fractals. 3 (4): 785–798. doi:10.1142/S0218348X95000692.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya