In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
Duplication matrix
The duplication matrix
is the unique
matrix which, for any
symmetric matrix
, transforms
into
:
.
For the
symmetric matrix
, this transformation reads

The explicit formula for calculating the duplication matrix for a
matrix is:
Where:
is a unit vector of order
having the value
in the position
and 0 elsewhere;
is a
matrix with 1 in position
and
and zero elsewhere
Here is a C++ function using Armadillo (C++ library):
arma::mat duplication_matrix(const int &n) {
arma::mat out((n*(n+1))/2, n*n, arma::fill::zeros);
for (int j = 0; j < n; ++j) {
for (int i = j; i < n; ++i) {
arma::vec u((n*(n+1))/2, arma::fill::zeros);
u(j*n+i-((j+1)*j)/2) = 1.0;
arma::mat T(n,n, arma::fill::zeros);
T(i,j) = 1.0;
T(j,i) = 1.0;
out += u * arma::trans(arma::vectorise(T));
}
}
return out.t();
}
Elimination matrix
An elimination matrix
is a
matrix which, for any
matrix
, transforms
into
:
. [1]
By the explicit (constructive) definition given by Magnus & Neudecker (1980), the
by
elimination matrix
is given by

where
is a unit vector whose
-th element is one and zeros elsewhere, and
.
Here is a C++ function using Armadillo (C++ library):
arma::mat elimination_matrix(const int &n) {
arma::mat out((n*(n+1))/2, n*n, arma::fill::zeros);
for (int j = 0; j < n; ++j) {
arma::rowvec e_j(n, arma::fill::zeros);
e_j(j) = 1.0;
for (int i = j; i < n; ++i) {
arma::vec u((n*(n+1))/2, arma::fill::zeros);
u(j*n+i-((j+1)*j)/2) = 1.0;
arma::rowvec e_i(n, arma::fill::zeros);
e_i(i) = 1.0;
out += arma::kron(u, arma::kron(e_j, e_i));
}
}
return out;
}
For the
matrix
, one choice for this transformation is given by
.
Notes
References
- Magnus, Jan R.; Neudecker, Heinz (1980), "The elimination matrix: some lemmas and applications", SIAM Journal on Algebraic and Discrete Methods, 1 (4): 422–449, doi:10.1137/0601049, ISSN 0196-5212.
- Jan R. Magnus and Heinz Neudecker (1988), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley. ISBN 0-471-98633-X.
- Jan R. Magnus (1988), Linear Structures, Oxford University Press. ISBN 0-19-520655-X