Essential monomorphism

In mathematics, specifically category theory, an essential monomorphism is a monomorphism i in an abelian category C such that for a morphism f in C, the composition is a monomorphism only when f is a monomorphism.[1] Essential monomorphisms in a category of modules are those whose image is an essential submodule of the codomain. An injective hull of an object A is an essential monomorphism from A to an injective object.[1]

References

  1. ^ a b Hashimoto, Mitsuyasu (November 2, 2000). Auslander-Buchweitz Approximations of Equivariant Modules. Cambridge University Press. p. 19. ISBN 9780521796965. Retrieved February 3, 2024 – via Google Books.


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya