Finite extensions of local fieldsIn algebraic number theory, through completion, the study of ramification of a prime ideal can often be reduced to the case of local fields where a more detailed analysis can be carried out with the aid of tools such as ramification groups. In this article, a local field is non-archimedean and has finite residue field. Unramified extensionLet be a finite Galois extension of nonarchimedean local fields with finite residue fields and Galois group . Then the following are equivalent.
When is unramified, by (iv) (or (iii)), G can be identified with , which is finite cyclic. The above implies that there is an equivalence of categories between the finite unramified extensions of a local field K and finite separable extensions of the residue field of K. Totally ramified extensionAgain, let be a finite Galois extension of nonarchimedean local fields with finite residue fields and Galois group . The following are equivalent.
See alsoReferences
|
Portal di Ensiklopedia Dunia