Gauge vector–tensor gravity[1] (GVT) is a relativistic generalization of Mordehai Milgrom's modified Newtonian dynamics (MOND) paradigm[2] where gauge fields cause the MOND behavior. The former covariant realizations of MOND such as the Bekenstein's tensor–vector–scalar gravity and the Moffat's scalar–tensor–vector gravity attribute MONDian behavior to some scalar fields. GVT is the first example wherein the MONDian behavior is mapped to the gauge vector fields.
The main features of GVT can be summarized as follows:
So the theory coincides to the Einstein–Hilbert gravity in its Newtonian and strong regimes.
MOND regime
The MOND regime of the theory is defined to be
So the action for the field becomes aquadratic. For the static mass distribution, the theory then converts to the AQUAL model of gravity[3] with the critical acceleration of
So the GVT theory is capable of reproducing the flat rotational velocity curves of galaxies. The current observations do not fix which is supposedly of order one.
Post-MONDian regime
The post-MONDian regime of the theory is defined where both of the actions of the are aquadratic. The MOND type behavior is suppressed in this regime due to the contribution of the second gauge field.
^Bekenstein, J.; Milgrom, M. (1 November 1984). "Does the missing mass problem signal the breakdown of Newtonian gravity?". The Astrophysical Journal. 286: 7. Bibcode:1984ApJ...286....7B. doi:10.1086/162570.