Generalized integer gamma distribution
In probability and statistics , the generalized integer gamma distribution (GIG) is the distribution of the sum of independent
gamma distributed random variables , all with integer shape parameters and different rate parameters. This is a special case of the generalized chi-squared distribution . A related concept is the generalized near-integer gamma distribution (GNIG).
Definition
The random variable
X
{\displaystyle X\!}
has a gamma distribution with shape parameter
r
{\displaystyle r}
and rate parameter
λ
{\displaystyle \lambda }
if its probability density function is
f
X
(
x
)
=
λ
r
Γ
(
r
)
e
−
λ
x
x
r
−
1
(
x
>
0
;
λ
,
r
>
0
)
{\displaystyle f_{X}^{}(x)={\frac {\lambda ^{r}}{\Gamma (r)}}\,e^{-\lambda x}x^{r-1}~~~~~~(x>0;\,\lambda ,r>0)}
and this fact is denoted by
X
∼
Γ
(
r
,
λ
)
.
{\displaystyle X\sim \Gamma (r,\lambda )\!.}
Let
X
j
∼
Γ
(
r
j
,
λ
j
)
{\displaystyle X_{j}\sim \Gamma (r_{j},\lambda _{j})\!}
, where
(
j
=
1
,
…
,
p
)
,
{\displaystyle (j=1,\dots ,p),}
be
p
{\displaystyle p}
independent random variables, with all
r
j
{\displaystyle r_{j}}
being positive integers and all
λ
j
{\displaystyle \lambda _{j}\!}
different. In other words, each variable has the Erlang distribution with different shape parameters. The uniqueness of each shape parameter comes without loss of generality, because any case where some of the
λ
j
{\displaystyle \lambda _{j}}
are equal would be treated by first adding the corresponding variables: this sum would have a gamma distribution with the same rate parameter and a shape parameter which is equal to the sum of the shape parameters in the original distributions.
Then the random variable Y defined by
Y
=
∑
j
=
1
p
X
j
{\displaystyle Y=\sum _{j=1}^{p}X_{j}}
has a GIG (generalized integer gamma) distribution of depth
p
{\displaystyle p}
with shape parameters
r
j
{\displaystyle r_{j}\!}
and rate parameters
λ
j
{\displaystyle \lambda _{j}\!}
(
j
=
1
,
…
,
p
)
{\displaystyle (j=1,\dots ,p)}
. This fact is denoted by
Y
∼
G
I
G
(
r
j
,
λ
j
;
p
)
.
{\displaystyle Y\sim GIG(r_{j},\lambda _{j};p)\!.}
It is also a special case of the generalized chi-squared distribution .
Properties
The probability density function and the cumulative distribution function of Y are respectively given by[ 1] [ 2] [ 3]
f
Y
GIG
(
y
|
r
1
,
…
,
r
p
;
λ
1
,
…
,
λ
p
)
=
K
∑
j
=
1
p
P
j
(
y
)
e
−
λ
j
y
,
(
y
>
0
)
{\displaystyle f_{Y}^{\text{GIG}}(y|r_{1},\dots ,r_{p};\lambda _{1},\dots ,\lambda _{p})\,=\,K\sum _{j=1}^{p}P_{j}(y)\,e^{-\lambda _{j}\,y}\,,~~~~(y>0)}
and
F
Y
GIG
(
y
|
r
1
,
…
,
r
p
;
λ
1
,
…
,
λ
p
)
=
1
−
K
∑
j
=
1
p
P
j
∗
(
y
)
e
−
λ
j
y
,
(
y
>
0
)
{\displaystyle F_{Y}^{\text{GIG}}(y|r_{1},\dots ,r_{p};\lambda _{1},\dots ,\lambda _{p})\,=\,1-K\sum _{j=1}^{p}P_{j}^{*}(y)\,e^{-\lambda _{j}\,y}\,,~~~~(y>0)}
where
K
=
∏
j
=
1
p
λ
j
r
j
,
P
j
(
y
)
=
∑
k
=
1
r
j
c
j
,
k
y
k
−
1
{\displaystyle K=\prod _{j=1}^{p}\lambda _{j}^{r_{j}}~,~~~~~P_{j}(y)=\sum _{k=1}^{r_{j}}c_{j,k}\,y^{k-1}}
and
P
j
∗
(
y
)
=
∑
k
=
1
r
j
c
j
,
k
(
k
−
1
)
!
∑
i
=
0
k
−
1
y
i
i
!
λ
j
k
−
i
{\displaystyle P_{j}^{*}(y)=\sum _{k=1}^{r_{j}}c_{j,k}\,(k-1)!\sum _{i=0}^{k-1}{\frac {y^{i}}{i!\,\lambda _{j}^{k-i}}}}
with
c
j
,
r
j
=
1
(
r
j
−
1
)
!
∏
i
=
1
p
i
≠
j
(
λ
i
−
λ
j
)
−
r
i
,
j
=
1
,
…
,
p
,
{\displaystyle c_{j,r_{j}}={\frac {1}{(r_{j}-1)!}}\,\mathop {\prod _{i=1}^{p}} _{i\neq j}(\lambda _{i}-\lambda _{j})^{-r_{i}}~,~~~~~~j=1,\ldots ,p\,,}
1
and
c
j
,
r
j
−
k
=
1
k
∑
i
=
1
k
(
r
j
−
k
+
i
−
1
)
!
(
r
j
−
k
−
1
)
!
R
(
i
,
j
,
p
)
c
j
,
r
j
−
(
k
−
i
)
,
(
k
=
1
,
…
,
r
j
−
1
;
j
=
1
,
…
,
p
)
{\displaystyle c_{j,r_{j}-k}={\frac {1}{k}}\sum _{i=1}^{k}{\frac {(r_{j}-k+i-1)!}{(r_{j}-k-1)!}}\,R(i,j,p)\,c_{j,r_{j}-(k-i)}\,,~~~~~~(k=1,\ldots ,r_{j}-1;\,j=1,\ldots ,p)}
2
where
R
(
i
,
j
,
p
)
=
∑
k
=
1
p
k
≠
j
r
k
(
λ
j
−
λ
k
)
−
i
(
i
=
1
,
…
,
r
j
−
1
)
.
{\displaystyle R(i,j,p)=\mathop {\sum _{k=1}^{p}} _{k\neq j}r_{k}\left(\lambda _{j}-\lambda _{k}\right)^{-i}~~~(i=1,\ldots ,r_{j}-1)\,.}
3
Alternative expressions are available in the literature on generalized chi-squared distribution , which is a field where computer algorithms have been available for some years.[when? ]
Generalization
The GNIG (generalized near-integer gamma) distribution of depth
p
+
1
{\displaystyle p+1}
is the distribution of the random variable[ 4]
Z
=
Y
1
+
Y
2
,
{\displaystyle Z=Y_{1}+Y_{2}\!,}
where
Y
1
∼
G
I
G
(
r
j
,
λ
j
;
p
)
{\displaystyle Y_{1}\sim GIG(r_{j},\lambda _{j};p)\!}
and
Y
2
∼
Γ
(
r
,
λ
)
{\displaystyle Y_{2}\sim \Gamma (r,\lambda )\!}
are two independent random variables, where
r
{\displaystyle r}
is a positive non-integer real and where
λ
≠
λ
j
{\displaystyle \lambda \neq \lambda _{j}}
(
j
=
1
,
…
,
p
)
{\displaystyle (j=1,\dots ,p)}
.
Properties
The probability density function of
Z
{\displaystyle Z\!}
is given by
f
Z
GNIG
(
z
|
r
1
,
…
,
r
p
,
r
;
λ
1
,
…
,
λ
p
,
λ
)
=
K
λ
r
∑
j
=
1
p
e
−
λ
j
z
∑
k
=
1
r
j
{
c
j
,
k
Γ
(
k
)
Γ
(
k
+
r
)
z
k
+
r
−
1
1
F
1
(
r
,
k
+
r
,
−
(
λ
−
λ
j
)
z
)
}
,
(
z
>
0
)
{\displaystyle {\begin{array}{l}\displaystyle f_{Z}^{\text{GNIG}}(z|r_{1},\dots ,r_{p},r;\,\lambda _{1},\dots ,\lambda _{p},\lambda )=\\[5pt]\displaystyle \quad \quad \quad K\lambda ^{r}\sum \limits _{j=1}^{p}{e^{-\lambda _{j}z}}\sum \limits _{k=1}^{r_{j}}{\left\{{c_{j,k}{\frac {\Gamma (k)}{\Gamma (k+r)}}z^{k+r-1}{}_{1}F_{1}(r,k+r,-(\lambda -\lambda _{j})z)}\right\}}{\rm {,}}~~~~(z>0)\end{array}}}
and the cumulative distribution function is given by
F
Z
GNIG
(
z
|
r
1
,
…
,
r
p
,
r
;
λ
1
,
…
,
λ
p
,
λ
)
=
λ
r
z
r
Γ
(
r
+
1
)
1
F
1
(
r
,
r
+
1
,
−
λ
z
)
−
K
λ
r
∑
j
=
1
p
e
−
λ
j
z
∑
k
=
1
r
j
c
j
,
k
∗
∑
i
=
0
k
−
1
z
r
+
i
λ
j
i
Γ
(
r
+
1
+
i
)
1
F
1
(
r
,
r
+
1
+
i
,
−
(
λ
−
λ
j
)
z
)
(
z
>
0
)
{\displaystyle {\begin{array}{l}\displaystyle F_{Z}^{\text{GNIG}}(z|r_{1},\ldots ,r_{p},r;\,\lambda _{1},\ldots ,\lambda _{p},\lambda )={\frac {\lambda ^{r}\,{z^{r}}}{\Gamma (r+1)}}{}_{1}F_{1}(r,r+1,-\lambda z)\\[12pt]\quad \quad \displaystyle -K\lambda ^{r}\sum \limits _{j=1}^{p}{e^{-\lambda _{j}z}}\sum \limits _{k=1}^{r_{j}}{c_{j,k}^{*}}\sum \limits _{i=0}^{k-1}{\frac {z^{r+i}\lambda _{j}^{i}}{\Gamma (r+1+i)}}{}_{1}F_{1}(r,r+1+i,-(\lambda -\lambda _{j})z)~~~~(z>0)\end{array}}}
where
c
j
,
k
∗
=
c
j
,
k
λ
j
k
Γ
(
k
)
{\displaystyle c_{j,k}^{*}={\frac {c_{j,k}}{\lambda _{j}^{k}}}\Gamma (k)}
with
c
j
,
k
{\displaystyle c_{j,k}}
given by (1 )-(3 ) above. In the above expressions
1
F
1
(
a
,
b
;
z
)
{\displaystyle _{1}F_{1}(a,b;z)}
is the Kummer confluent hypergeometric function. This function has usually very good convergence properties and is nowadays easily handled by a number of software packages.
Applications
The GIG and GNIG distributions are the basis for the exact and near-exact distributions of a large number of likelihood ratio test statistics and related statistics used in multivariate analysis . [ 5] [ 6] [ 7] [ 8] [ 9] More precisely, this application is usually for the exact and near-exact distributions of the negative logarithm of such statistics. If necessary, it is then easy, through a simple transformation, to obtain the corresponding exact or near-exact distributions for the corresponding likelihood ratio test statistics themselves. [ 4] [ 10] [ 11]
The GIG distribution is also the basis for a number of wrapped distributions in the wrapped gamma family.
[ 12]
As being a special case of the generalized chi-squared distribution , there are many other applications; for example, in renewal theory[ 1] and in multi-antenna wireless communications.[ 13] [ 14] [ 15] [ 16]
References
^ a b Amari S.V. and Misra R.B. (1997). Closed-From Expressions for Distribution of Sum of Exponential Random Variables [permanent dead link ] . IEEE Transactions on Reliability , vol. 46, no. 4, 519-522.
^ Coelho, C. A. (1998). The Generalized Integer Gamma distribution – a basis for distributions in Multivariate Statistics . Journal of Multivariate Analysis , 64 , 86-102.
^ Coelho, C. A. (1999). Addendum to the paper ’The Generalized IntegerGamma distribution - a basis for distributions in MultivariateAnalysis’ . Journal of Multivariate Analysis , 69 , 281-285.
^ a b Coelho, C. A. (2004). "The Generalized Near-Integer Gamma distribution – a basis for ’near-exact’ approximations to the distributions of statistics which are the product of an odd number of particular independent Beta random variables" . Journal of Multivariate Analysis , 89 (2), 191-218. MR 2063631 Zbl 1047.62014 [WOS: 000221483200001]
^ Bilodeau, M., Brenner, D. (1999) "Theory of Multivariate Statistics" . Springer, New York [Ch. 11, sec. 11.4]
^ Das, S., Dey, D. K. (2010) "On Bayesian inference for generalized multivariate gamma distribution" . Statistics and Probability Letters , 80, 1492-1499.
^ Karagiannidis, K., Sagias, N. C., Tsiftsis, T. A. (2006) "Closed-form statistics for the sum of squared Nakagami-m variates and its applications" . Transactions on Communications , 54, 1353-1359.
^ Paolella, M. S. (2007) "Intermediate Probability - A Computational Approach" . J. Wiley & Sons, New York [Ch. 2, sec. 2.2]
^ Timm, N. H. (2002) "Applied Multivariate Analysis" . Springer, New York [Ch. 3, sec. 3.5]
^ Coelho, C. A. (2006) "The exact and near-exact distributions of the product of independent Beta random variables whose second parameter is rational" . Journal of Combinatorics, Information & System Sciences , 31 (1-4), 21-44. MR 2351709
^ Coelho, C. A., Alberto, R. P. and Grilo, L. M. (2006) "A mixture of Generalized Integer Gamma distributions as the exact distribution of the product of an odd number of independent Beta random variables.Applications" . Journal of Interdisciplinary Mathematics , 9 , 2, 229-248. MR 2245158 Zbl 1117.62017
^ Coelho, C. A. (2007) "The wrapped Gamma distribution and wrapped sums and linear combinations of independent Gamma and Laplace distributions" . Journal of Statistical Theory and Practice , 1 (1), 1-29.
^ E. Björnson, D. Hammarwall, B. Ottersten (2009) "Exploiting Quantized Channel Norm Feedback through Conditional Statistics in Arbitrarily Correlated MIMO Systems" , IEEE Transactions on Signal Processing , 57, 4027-4041
^ Kaiser, T., Zheng, F. (2010) "Ultra Wideband Systems with MIMO" . J. Wiley & Sons, Chichester, U.K. [Ch. 6, sec. 6.6]
^ Suraweera, H. A., Smith, P. J., Surobhi, N. A. (2008) "Exact outage probability of cooperative diversity with opportunistic spectrum access" . IEEE International Conference on Communications, 2008, ICC Workshops '08 , 79-86 (ISBN 978-1-4244-2052-0 - doi :10.1109/ICCW.2008.20) .
^ Surobhi, N. A. (2010) "Outage performance of cooperative cognitive relay networks" . MsC Thesis, School of Engineering and Science , Victoria University, Melbourne, Australia [Ch. 3, sec. 3.4].
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families