Geometric models are usually distinguished from procedural and object-oriented models, which define the shape implicitly by an opaque algorithm that generates its appearance.[citation needed] They are also contrasted with digital images and volumetric models which represent the shape as a subset of a fine regular partition of space; and with fractal models that give an infinitely recursive definition of the shape. However, these distinctions are often blurred: for instance, a digital image can be interpreted as a collection of coloredsquares; and geometric shapes such as circles are defined by implicit mathematical equations. Also, a fractal model yields a parametric or implicit model when its recursive definition is truncated to a finite depth.
Notable awards of the area are the John A. Gregory Memorial Award[2] and the Bézier award.[3]
For multi-resolution (multiple level of detail) geometric modeling :
Armin Iske; Ewald Quak; Michael S. Floater (2002). Tutorials on Multiresolution in Geometric Modelling: Summer School Lecture Notes. Springer Science & Business Media. ISBN978-3-540-43639-3.
Neil Dodgson; Michael S. Floater; Malcolm Sabin (2006). Advances in Multiresolution for Geometric Modelling. Springer Science & Business Media. ISBN978-3-540-26808-6.