Basic element – A basic element with respect to an element is an element of a cochain complex (e.g., complex of differential forms on a manifold) that is closed: and the contraction of by is zero.
Doubling – Given a manifold with boundary, doubling is taking two copies of and identifying their boundaries. As the result we get a manifold without boundary.
Pair of pants – An orientable compact surface with 3 boundary components. All compact orientable surfaces can be reconstructed by gluing pairs of pants along their boundary components.
Parallelizable – A smooth manifold is parallelizable if it admits a smooth global frame. This is equivalent to the tangent bundle being trivial.
Principal bundle – A principal bundle is a fiber bundle together with an action on by a Lie group that preserves the fibers of and acts simply transitively on those fibers.
Transversality – Two submanifolds and intersect transversally if at each point of intersection p their tangent spaces and generate the whole tangent space at p of the total manifold.
Vector bundle – a fiber bundle whose fibers are vector spaces and whose transition functions are linear maps.
Vector field – a section of a vector bundle. More specifically, a vector field can mean a section of the tangent bundle.
W
Whitney sum – A Whitney sum is an analog of the direct product for vector bundles. Given two vector bundles and over the same base their cartesian product is a vector bundle over . The diagonal map induces a vector bundle over called the Whitney sum of these vector bundles and denoted by .