In some graphical enumeration problems, the vertices of the graph are considered to be labeled in such a way as to be distinguishable from each other, while in other problems any permutation of the vertices is considered to form the same graph, so the vertices are considered identical or unlabeled. In general, labeled problems tend to be easier.[5] As with combinatorial enumeration more generally, the Pólya enumeration theorem is an important tool for reducing unlabeled problems to labeled ones: each unlabeled class is considered as a symmetry class of labeled objects.
^Cameron, Peter J. (2004), "Automorphisms of graphs", in Beineke, Lowell W.; Wilson, Robin J. (eds.), Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and its Applications, vol. 102, Cambridge University Press, pp. 137–155, ISBN0-521-80197-4