In statistics, the graphical lasso[1] is a sparsepenalized maximum likelihood estimator for the concentration or precision matrix (inverse of covariance matrix) of a multivariate elliptical distribution. The original variant was formulated to solve Dempster's covariance selection problem[2][3] for the multivariate Gaussian distribution when observations were limited. Subsequently, the optimization algorithms to solve this problem were improved[4] and extended[5] to other types of estimators and distributions.
^Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E. (2011). "Scikit-learn: Machine Learning in Python". Journal of Machine Learning Research. arXiv:1201.0490. Bibcode:2012arXiv1201.0490P.{{cite journal}}: CS1 maint: multiple names: authors list (link)