In physics, the gravitomagnetic clock effect is a deviation from Kepler's third law that, according to the weak-field and low-velocity approximation of general relativity , will be suffered by a particle in orbit around a (slowly) spinning body, such as a typical planet or star .
Explanation
According to general relativity , in its weak-field and low-velocity linearized approximation, a slowly spinning body induces an additional component of the gravitational field that acts on a freely-falling test particle with a non-central, gravitomagnetic Lorentz -like force.
Among its consequences on the particle's orbital motion there is a small correction to Kepler's third law , namely
T
K
e
p
=
2
π
a
3
G
M
{\displaystyle T_{\rm {Kep}}=2\pi {\sqrt {\frac {a^{3}}{GM}}}}
where T Kep is the particle's period, M is the mass of the central body, and a is the semimajor axis of the particle's ellipse . If the orbit of the particle is circular and lies in the equatorial plane of the central body, the correction is
T
=
T
K
e
p
+
T
G
v
m
=
T
K
e
p
±
S
M
c
2
,
{\displaystyle T=T_{\rm {Kep}}+T_{\rm {Gvm}}=T_{\rm {Kep}}\pm {\frac {S}{Mc^{2}}},}
where S is the central body's angular momentum and c is the speed of light in vacuum.
Particles orbiting in opposite directions experience gravitomagnetic corrections T Gvm with opposite signs, so that the difference of their orbital periods would cancel the standard Keplerian terms and would add the gravitomagnetic ones.[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [ 10] [ 11] [ 12] [excessive citations ]
Note that the + sign occurs for particle's corotation with respect to the rotation of the central body, whereas the − sign is for counter-rotation. That is, if the satellite orbits in the same direction as the planet spins, it takes more time to make a full orbit, whereas if it moves oppositely with respect to the planet's rotation its orbital period gets shorter.
See also
References
^
Cohen, J.M.; Mashhoon, B. (October 1993). "Standard Clocks, Interferometry, and Gravitomagnetism". Physics Letters A . 181 (5): 353– 358. Bibcode :1993PhLA..181..353C . doi :10.1016/0375-9601(93)90387-F .
^
Mashhoon, B.; Gronwald, F.; Theiss, D.S. (February 1999). "On measuring gravitomagnetism via spaceborne clocks: a gravitomagnetic clock effect". Annalen der Physik . 8 (2): 135– 152. arXiv :gr-qc/9804008 . Bibcode :1999AnP...511..135M . doi :10.1002/(SICI)1521-3889(199902)8:2<135::AID-ANDP135>3.0.CO;2-N . S2CID 17353038 .
^
Tartaglia, A. (February 2000). "Detection of the gravitomagnetic clock effect". Classical and Quantum Gravity . 17 (4): 783– 792. arXiv :gr-qc/9909006 . Bibcode :2000CQGra..17..783T . doi :10.1088/0264-9381/17/4/304 . S2CID 9356721 .
^
Tartaglia, A. (September 2000). "Geometric Treatment of the Gravitomagnetic Clock Effect". General Relativity and Gravitation . 32 (9): 1745– 1756. arXiv :gr-qc/0001080 . Bibcode :2000GReGr..32.1745T . doi :10.1023/A:1001998505329 . S2CID 119383886 .
^
Lichtenegger, H.I.M.; Gronwald, F.; Mashhoon, B. (2000). "On detecting the gravitomagnetic field of the Earth by means of orbiting clocks". Advances in Space Research . 25 (6): 1255– 1258. arXiv :gr-qc/9808017 . Bibcode :2000AdSpR..25.1255L . doi :10.1016/S0273-1177(99)00997-7 . S2CID 16542540 .
^
Iorio, L. (August 2001). "Satellite Gravitational Orbital Perturbations and the Gravitomagnetic Clock Effect". International Journal of Modern Physics D . 10 (4): 465– 476. arXiv :gr-qc/0007014 . Bibcode :2001IJMPD..10..465I . doi :10.1142/S0218271801000925 . S2CID 119426253 .
^
Iorio, L. (October 2001). "Satellite non-gravitational orbital perturbations and the detection of the gravitomagnetic clock effect". Classical and Quantum Gravity . 18 (20): 4303– 4310. arXiv :gr-qc/0007057 . Bibcode :2001CQGra..18.4303I . doi :10.1088/0264-9381/18/20/309 . S2CID 6342400 .
^
Mashhoon, B.; Gronwald, F; Lichtenegger, H.I.M. (2001). "Gravitomagnetism and the Clock Effect". Gyros, Clocks, Interferometers ...: Testing Relativistic Gravity in Space . Lecture Notes in Physics. Vol. 562. pp. 83– 108. arXiv :gr-qc/9912027 . Bibcode :2001LNP...562...83M . doi :10.1007/3-540-40988-2_5 . ISBN 978-3-540-41236-6 . S2CID 32411999 .
^
Mashhoon, B.; Iorio, L.; Lichtenegger, H.I.M. (December 2001). "On the gravitomagnetic clock effect". Physics Letters A . 292 (1– 2): 49– 57. arXiv :gr-qc/0110055 . Bibcode :2001PhLA..292...49M . doi :10.1016/S0375-9601(01)00776-9 . S2CID 14981533 .
^
Iorio, L.; Lichtenegger, H.I.M.; Mashhoon, B. (January 2002). "An alternative derivation of the gravitomagnetic clock effect". Classical and Quantum Gravity . 19 (1): 39– 49. arXiv :gr-qc/0107002 . Bibcode :2002CQGra..19...39I . doi :10.1088/0264-9381/19/1/303 . S2CID 5941537 .
^
Iorio, L.; Lichtenegger, H.I.M. (February 2005). "On the possibility of measuring the gravitomagnetic clock effect in an Earth space-based experiment". Classical and Quantum Gravity . 22 (1): 119– 132. arXiv :gr-qc/0210030 . Bibcode :2005CQGra..22..119I . doi :10.1088/0264-9381/22/1/008 . S2CID 118903460 .
^
Lichtenegger, H.I.M.; Iorio, L.; Mashhoon, B. (December 2006). "The gravitomagnetic clock effect and its possible observation". Annalen der Physik . 15 (12): 868– 876. arXiv :gr-qc/0211108 . Bibcode :2006AnP...518..868L . doi :10.1002/andp.200610214 . S2CID 9087843 .