The Hartman-Watson distributions are the probability distributions , which satisfy the following relationship between the Laplace transform and the modified Bessel function of first kind:
for ,
where denoted the modified Bessel function defined as
is an alternative notation for a probability measure .
References
^Hartman, Philip; Watson, Geoffrey S. (1974). "Normal" Distribution Functions on Spheres and the Modified Bessel Functions". The Annals of Probability. 2 (4). Institute of Mathematical Statistics: 593 -- 607. doi:10.1214/aop/1176996606.
^Yor, Marc (1980). "Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson". Z. Wahrscheinlichkeitstheorie verw Gebiete. 53: 71–95. doi:10.1007/BF00531612.
^Yor, Marc (1980). "Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson". Z. Wahrscheinlichkeitstheorie verw Gebiete. 53: 72. doi:10.1007/BF00531612.
^Yor, Marc (1980). "Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson". Z. Wahrscheinlichkeitstheorie verw Gebiete. 53: 84–85. doi:10.1007/BF00531612.
^Yor, Marc (1992). "On Some Exponential Functionals of Brownian Motion". Advances in Applied Probability. 24 (3): 509–531. doi:10.2307/1427477.
^Matsumoto, Hiroyuki; Yor, Marc (2005). "Exponential functionals of Brownian motion, I: Probability laws at fixed time". Probability Surveys. 2. Institute of Mathematical Statistics and Bernoulli Society: 312–347. arXiv:math/0511517. doi:10.1214/154957805100000159.