Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane. Hence planar hyperbolic triangles also describe triangles possible in any higher dimension of hyperbolic spaces.
Two triangles are congruent if and only if they correspond under a finite product of line reflections.
Two triangles with corresponding angles equal are congruent (i.e., all similar triangles are congruent).
Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry:
The angle sum of a triangle is less than 180°.
The area of a triangle is proportional to the deficit of its angle sum from 180°.
Hyperbolic triangles also have some properties that are not found in other geometries:
Some hyperbolic triangles have no circumscribed circle, this is the case when at least one of its vertices is an ideal point or when all of its vertices lie on a horocycle or on a one sided hypercycle.
The definition of a triangle can be generalized, permitting vertices on the ideal boundary of the plane while keeping the sides within the plane. If a pair of sides is limiting parallel (i.e. the distance between them approaches zero as they tend to the ideal point, but they do not intersect), then they end at an ideal vertex represented as an omega point.
Such a pair of sides may also be said to form an angle of zero.
A triangle with a zero angle is impossible in Euclidean geometry for straight sides lying on distinct lines. However, such zero angles are possible with tangent circles.
A triangle with one ideal vertex is called an omega triangle.
Special Triangles with ideal vertices are:
Triangle of parallelism
A triangle where one vertex is an ideal point, one angle is right: the third angle is the angle of parallelism for the length of the side between the right and the third angle.
Schweikart triangle
The triangle where two vertices are ideal points and the remaining angle is right, one of the first hyperbolic triangles (1818) described by Ferdinand Karl Schweikart.
The triangle where all vertices are ideal points, an ideal triangle is the largest possible triangle in hyperbolic geometry because of the zero sum of the angles.
Standardized Gaussian curvature
The relations among the angles and sides are analogous to those of spherical trigonometry; the length scale for both spherical geometry and hyperbolic geometry can for example be defined as the length of a side of an equilateral triangle with fixed angles.
The length scale is most convenient if the lengths are measured in terms of the absolute length (a special unit of length analogous to a relations between distances in spherical geometry). This choice for this length scale makes formulas simpler.[2]
In terms of the (constant and negative) Gaussian curvatureK of a hyperbolic plane, a unit of absolute length corresponds to a length of
.
In a hyperbolic triangle the sum of the anglesA, B, C (respectively opposite to the side with the corresponding letter) is strictly less than a straight angle. The difference between the measure of a straight angle and the sum of the measures of a triangle's angles is called the defect of the triangle. The area of a hyperbolic triangle is equal to its defect multiplied by the square of R:
In all the formulas stated below the sides a, b, and c must be measured in absolute length, a unit so that the Gaussian curvatureK of the plane is −1. In other words, the quantity R in the paragraph above is supposed to be equal to 1.
Trigonometric formulas for hyperbolic triangles depend on the hyperbolic functions sinh, cosh, and tanh.
In this case angle B = 0, a = c = and , resulting in .
Equilateral triangle
The trigonometry formulas of right triangles also give the relations between the sides s and the angles A of an equilateral triangle (a triangle where all sides have the same length and all angles are equal).
The relations are:
General trigonometry
Whether C is a right angle or not, the following relationships hold:
The hyperbolic law of cosines is as follows:
^Ratcliffe, John (2006). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics. Vol. 149. Springer. p. 99. ISBN9780387331973. That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien, which was published posthumously in 1786.