Naturally occurring tungsten (74 W) consists of five isotopes . Four are considered stable (182 W, 183 W, 184 W, and 186 W) and one is slightly radioactive , 180 W, with an extremely long half-life of (1.59± 0.05)× 1018 years .[ 1] On average, two alpha decays of 180 W occur per gram of natural tungsten per year, so for most practical purposes, 180 W can be considered stable. Theoretically, all five naturally occurring isotopes of tungsten can decay into isotopes of hafnium (element 72) by alpha emission, but only 180 W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable ), and lower bounds for their half-lives have been established:
182 W, t1/2 > 7.7×1021 years
183 W, t1/2 > 4.1×1021 years
184 W, t1/2 > 8.9×1021 years
186 W, t1/2 > 8.2×1021 years
Thirty-four artificial radioisotopes of tungsten have been characterized with mass numbers ranging from 156 to 194, the most stable of which are 181 W with a half-life of 121.2 days, 185 W with a half-life of 75.1 days, 188 W with a half-life of 69.4 days and 178 W with a half-life of 21.6 days. All of the remaining radioactive isotopes have half-lives of less than 24 hours, and most of these have half-lives that are less than 8 minutes. Tungsten also has twelve known meta states , the most stable being 179m1 W (t1/2 6.4 minutes).
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ 4] [ n 2] [ n 3]
Half-life [ 5] [ n 4] [ n 5]
Decay mode [ 5] [ n 6]
Daughter isotope [ n 7] [ n 8]
Spin andparity [ 5] [ n 9] [ n 5]
Natural abundance (mole fraction)
Excitation energy
Normal proportion[ 5]
Range of variation
156 W[ 6]
74
82
157+57 −34 ms
β+
156 Ta
0+
157 W[ 7]
74
83
156.97886(43)#
275(40) ms
β+
157 Ta
(7/2−)
158 W
74
84
157.97457(32)#
1.43(18) ms
α
154 Hf
0+
158m W
1889(8) keV
143(19) μs
α
154 Hf
(8+)
159 W
74
85
158.97270(32)#
8.2(7) ms
α (82%)
155 Hf
7/2−#
160 W
74
86
159.96851(16)
90(5) ms
α (87%)
156 Hf
0+
β+ (13%)
160 Ta
161 W
74
87
160.96725(22)#
409(16) ms
α (73%)
157 Hf
7/2−#
β+ (27%)
161 Ta
162 W
74
88
161.963500(19)
1.19(12) s
β+ (54.8%)
162 Ta
0+
α (45.2%)
158 Hf
163 W
74
89
162.962524(63)
2.63(9) s
β+ (86%)
163 Ta
7/2−
α (14%)
159 Hf
163m W
480.3(7) keV
154(3) ns
IT
163 W
13/2+
164 W
74
90
163.958952(10)
6.3(2) s
β+ (96.2%)
164 Ta
0+
α (3.8%)
160 Hf
165 W
74
91
164.958281(28)
5.1(5) s
β+
165 Ta
(5/2−)
166 W
74
92
165.955032(10)
19.2(6) s
β+ (99.97%)
166 Ta
0+
α (0.035%)
162 Hf
167 W
74
93
166.954811(20)
19.9(5) s
β+ (99.96%)
167 Ta
(5/2−)
α (0.04%)
163 Hf
168 W
74
94
167.951805(14)
50.9(19) s
β+ (99.97%)
168 Ta
0+
α (0.032%)
164 Hf
169 W
74
95
168.951779(17)
74(6) s
β+
169 Ta
5/2−#
170 W
74
96
169.949231(14)
2.42(4) min
β+ (99%)
170 Ta
0+
171 W
74
97
170.949451(30)
2.38(4) min
β+
171 Ta
(5/2−)
172 W
74
98
171.947292(30)
6.6(9) min
β+
172 Ta
0+
173 W
74
99
172.947689(30)
7.6(2) min
β+
173 Ta
5/2−
174 W
74
100
173.946079(30)
33.2(21) min
β+
174 Ta
0+
174m1 W
2267.8(4) keV
158(3) ns
IT
174 W
8−
174m2 W
3515.6(4) keV
128(8) ns
IT
174 W
12+
175 W
74
101
174.946717(30)
35.2(6) min
β+
175 Ta
(1/2−)
175m W
234.96(15) keV
216(6) ns
IT
175 W
(7/2+)
176 W
74
102
175.945634(30)
2.5(1) h
EC
176 Ta
0+
177 W
74
103
176.946643(30)
132.4(20) min
β+
177 Ta
1/2−
178 W
74
104
177.945886(16)
21.6(3) d
EC
178 Ta
0+
178m W
6572.7(3) keV
220(10) ns
IT
178 W
25+
179 W
74
105
178.947079(16)
37.05(16) min
β+
179 Ta
7/2−
179m1 W
221.91(3) keV
6.40(7) min
IT (99.71%)
179 W
1/2−
β+ (0.29%)
179 Ta
179m2 W
1631.90(8) keV
390(30) ns
IT
179 W
21/2+
179m3 W
3348.41(14) keV
750(80) ns
IT
179 W
35/2−
180 W[ n 10]
74
106
179.9467133(15)
1.59(5)×1018 y [ 1]
α
176 Hf
0+
0.0012(1)
180m1 W
1529.05(4) keV
5.47(9) ms
IT
180 W
8−
180m2 W
3264.7(3) keV
2.33(19) μs
IT
180 W
14−
181 W
74
107
180.9482187(16)
120.956(19) d
EC
181 Ta
9/2+
181m1 W
365.55(13) keV
14.59(15) μs
IT
181 W
5/2−
181m2 W
1653.0(3) keV
200(13) ns
IT
181 W
21/2+
182 W
74
108
181.94820564(80)
Observationally Stable [ n 11]
0+
0.2650(16)
182m W
2230.65(14) keV
1.3(1) μs
IT
182 W
10+
183 W
74
109
182.95022442(80)
Observationally Stable [ n 12]
1/2−
0.1431(4)
183m W
309.492(4) keV
5.30(8) s
IT
183 W
11/2+
184 W
74
110
183.95093318(79)
Observationally Stable [ n 13]
0+
0.3064(2)
184m1 W
1284.997(8) keV
8.33(18) μs
IT
184 W
5−
184m2 W
4127.7(5) keV
188(38) ns
IT
184 W
(14+)
185 W
74
111
184.95342121(79)
75.1(3) d
β−
185 Re
3/2−
185m W
197.383(23) keV
1.597(4) min
IT
185 W
11/2+
186 W
74
112
185.9543651(13)
Observationally Stable [ n 14]
0+
0.2843(19)
186m1 W
1517.2(6) keV
18(1) μs
IT
186 W
7−
186m2 W
3542.8(21) keV
2.0(2) s
IT
186 W
16+
187 W
74
113
186.9571612(13)
23.809(25) h
β−
187 Re
3/2−
187m W
410.06(4) keV
1.54(13) μs[ 8]
IT
187 W
11/2+
188 W
74
114
187.9584883(33)
69.77(5) d
β−
188 Re
0+
188m W
1926.7(8) keV
109.5(35) ns
IT
188 W
8−
189 W
74
115
188.96156(22)#
11.6(2) min
β−
189 Re
9/2−#
190 W
74
116
189.963104(38)
30.0(15) min
β−
190 Re
0+
190m1 W
1743.6(10) keV
111(17) ns
IT
190 W
8+
190m2 W
1840.6(14) keV
166(6) μs
IT
190 W
10−
191 W
74
117
190.966531(45)
14# s [>300 ns]
3/2−#
191m W
235(10)# keV
340(14) ns
IT
191 W
9/2−#
192 W
74
118
191.96820(22)#
40# s [>300 ns]
0+
193 W
74
119
192.97188(22)#
30# s [>300 ns]
1/2−#
194 W
74
120
193.97380(32)#
20# s [>300 ns]
0+
195 W
74
121
194.97774(32)#
30# s [>160 ns]
3/2−#
196 W
74
122
195.97988(43)#
25# s [>300 ns]
0+
197 W
74
123
196.98404(43)#
1# s [>300 ns]
5/2−#
This table header & footer:
^ m W – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ Bold half-life – nearly stable, half-life longer than age of universe .
^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ Primordial radionuclide
^ Believed to undergo α decay to 178 Hf with a half-life over 7.7×1021 y
^ Believed to undergo α decay to 179 Hf with a half-life over 6.70×1020 y
^ Believed to undergo α decay to 180 Hf with a half-life over 8.9×1021 y
^ Believed to undergo α decay to 182 Hf or β− β− decay to 186 Os with a half-life over 4.1×1018 y
See also
Daughter products other than tungsten
References
^ a b c Münster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J. -C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A. (May 2014). "Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA". Journal of Cosmology and Astroparticle Physics (05). arXiv :1403.5114 . Bibcode :2014JCAP...05..018M . doi :10.1088/1475-7516/2014/05/018 . 018.
^ "Standard Atomic Weights: Tungsten" . CIAAW . 1991.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C . 45 (3): 030003. doi :10.1088/1674-1137/abddaf .
^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ Briscoe, A. D.; Page, R. D.; Uusitalo, J.; et al. (2023). "Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides 160 Os and 156 W" . Physics Letters B . 47 (138310). doi :10.1016/j.physletb.2023.138310 . hdl :10272/23933 .
^ Bianco, L.; Page, R. D.; Darby, I. G.; et al. (7 June 2010). "Discovery of 157 W and 161 Os" (PDF) . Physics Letters B . 690 (1): 15– 18. Bibcode :2010PhLB..690...15B . doi :10.1016/j.physletb.2010.04.056 . ISSN 0370-2693 . S2CID 117121162 . Retrieved 11 June 2023 .
^ Chen, J. L.; Watanabe, H.; Walker, P. M.; et al. (2025). "Direct observation of β and γ decay from a high-spin long-lived isomer in 187 Ta". Physical Review C . 111 (014304). arXiv :2501.02848 . doi :10.1103/PhysRevC.111.014304 .
Isotope masses from:
Isotopic compositions and standard atomic masses from:
"News & Notices: Standard Atomic Weights Revised" . International Union of Pure and Applied Chemistry . 19 October 2005.
Half-life, spin, and isomer data selected from the following sources.
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102