In 1931, Koopman observed that the phase space of the classical system can be converted into a Hilbert space.[3] According to this formulation, functions representing physical observables become vectors, with an inner product defined in terms of a natural integration rule over the system's probability density on phase space. This reformulation makes it possible to draw interesting conclusions about the evolution of physical observables from Stone's theorem, which had been proved shortly before. This finding inspired von Neumann to apply the novel formalism to the ergodic problem in 1932.[4][5] Subsequently, he published several seminal results in modern ergodic theory, including the proof of his mean ergodic theorem.
In the approach of Koopman and von Neumann (KvN), dynamics in phase space is described by a (classical) probability density, recovered from an underlying wavefunction – the Koopman–von Neumann wavefunction – as the square of its absolute value (more precisely, as the amplitude multiplied with its own complex conjugate). This stands in analogy to the Born rule in quantum mechanics. In the KvN framework, observables are represented by commuting self-adjoint operators acting on the Hilbert space of KvN wavefunctions. The commutativity physically implies that all observables are simultaneously measurable. Contrast this with quantum mechanics, where observables need not commute, which underlines the uncertainty principle, Kochen–Specker theorem, and Bell inequalities.[11]
The KvN wavefunction is postulated to evolve according to exactly the same Liouville equation as the classical probability density. From this postulate it can be shown that indeed probability density dynamics is recovered.
Dynamics of the probability density (proof)
In classical statistical mechanics, the probability density (with respect to Liouville measure) obeys the Liouville equation[12][13]
with the self-adjoint Liouvillian
where denotes the classical Hamiltonian (i.e. the Liouvillian is times the Hamiltonian vector field considered as a first order differential operator).
The same dynamical equation is postulated for the KvN wavefunction
thus
and for its complex conjugate
From
follows using the product rule that
which proves that probability density dynamics can be recovered from the KvN wavefunction.
Remark
The last step of this derivation relies on the classical Liouville operator containing only first-order derivatives in the coordinate and momentum; this is not the case in quantum mechanics where the Schrödinger equation contains second-order derivatives.
Conversely, it is possible to start from operator postulates, similar to the Hilbert space axioms of quantum mechanics, and derive the equation of motion by specifying how expectation values evolve.[14]
The relevant axioms are that as in quantum mechanics (i) the states of a system are represented by normalized vectors of a complex Hilbert space, and the observables are given by self-adjoint operators acting on that space, (ii) the expectation value of an observable is obtained in the manner as the expectation value in quantum mechanics, (iii) the probabilities of measuring certain values of some observables are calculated by the Born rule, and (iv) the state space of a composite system is the tensor product of the subsystem's spaces.
These axioms allow us to recover the formalism of both classical and quantum mechanics.[14] Specifically, under the assumption that the classical position and momentum operators commute, the Liouville equation for the KvN wavefunction is recovered from averaged Newton's laws of motion. However, if the coordinate and momentum obey the canonical commutation relation, the Schrödinger equation of quantum mechanics is obtained.
into which we substitute a consequence of Stone's theorem and obtain
Since these identities must be valid for any initial state, the averaging can be dropped and the system of commutator equations for the unknown is derived
Assume that the coordinate and momentum commute . This assumption physically means that the classical particle's coordinate and momentum can be measured simultaneously, implying absence of the uncertainty principle.
The solution cannot be simply of the form because it would imply the contractions and . Therefore, we must utilize additional operators and obeying
The need to employ these auxiliary operators arises because all classical observables commute. Now we seek in the form . Utilizing KvN algebra, the commutator eqs for L can be converted into the following differential equations:[14][16]
Whence, we conclude that the classical KvN wave function evolves according to the Schrödinger-like equation of motion
The quantity is the probability amplitude for a classical particle to be at point with momentum at time . According to the axioms above, the probability density is given by
. Utilizing the identity
as well as (KvN dynamical eq in xp), we recover the classical Liouville equation
Moreover, according to the operator axioms and (xp eigenvec),
Therefore, the rule for calculating averages of observable in classical statistical mechanics has been recovered from the operator axioms with the additional assumption . As a result, the phase of a classical wave function does not contribute to observable averages. Contrary to quantum mechanics, the phase of a KvN wave function is physically irrelevant. Hence, nonexistence of the double-slit experiment[13][17][18] as well as Aharonov–Bohm effect[19] is established in the KvN mechanics.
where was introduced as a normalization constant to balance dimensionality. Since these identities must be valid for any initial state, the averaging can be dropped and the system of commutator equations for the unknown quantum generator of motion are derived
Contrary to the case of classical mechanics, we assume that observables of the coordinate and momentum obey the canonical commutation relation. Setting , the commutator equations can be converted into the differential equations
[14][16]
Whence, the Schrödinger equation was derived from the Ehrenfest theorems by assuming the canonical commutation relation between the coordinate and momentum. This derivation as well as the derivation of classical KvN mechanics shows that the difference between quantum and classical mechanics essentially boils down to the value of the commutator .
Measurements
In the Hilbert space and operator formulation of classical mechanics, the Koopman von Neumann–wavefunction takes the form of a superposition of eigenstates, and measurement collapses the KvN wavefunction to the eigenstate which is associated the measurement result, in analogy to the wave function collapse of quantum mechanics.
However, it can be shown that for Koopman–von Neumann classical mechanics non-selective measurements leave the KvN wavefunction unchanged.[12]
The essential distinction between KvN and Liouville mechanics lies in weighting (coloring) individual trajectories: Any weights can be utilized in KvN mechanics, while only positive weights are allowed in Liouville mechanics. Particles move along Newtonian trajectories in both cases. (Regarding a dynamical example, see below.)
The KvN approach is fruitful in studies on the quantum-classical correspondence[14][15][34][35][36] as it reveals that the Hilbert space formulation is not exclusively quantum mechanical.[37] Even Dirac spinors are not exceptionally quantum as they are utilized in the relativistic generalization of the KvN mechanics.[30] Similarly as the more well-known phase space formulation of quantum mechanics, the KvN approach can be understood as an attempt to bring classical and quantum mechanics into a common mathematical framework. In fact, the time evolution of the Wigner function approaches, in the classical limit, the time evolution of the KvN wavefunction of a classical particle.[30][38] However, a mathematical resemblance to quantum mechanics does not imply the presence of hallmark quantum effects. In particular, impossibility of double-slit experiment[13][17][18] and Aharonov–Bohm effect[19] are explicitly demonstrated in the KvN framework.
Quantum counterpart of the classical KvN propagation on the left: The Wigner function time evolution of the Morse potential in atomic units (a.u.). The solid lines represent the level set of the underlying Hamiltonian. Note that the same initial condition used for this quantum propagation as well as for the KvN propagation on the left.
^Blokhintsev, D.I. (1940). "The Gibbs Quantum Ensemble and its Connection with the Classical Ensemble". J. Phys. U.S.S.R. 2 (1): 71–74.
^Blokhintsev, D.I.; Nemirovsky, P (1940). "Connection of the Quantum Ensemble with the Gibbs Classical Ensemble. II". J. Phys. U.S.S.R. 3 (3): 191–194.
^Blokhintsev, D.I.; Dadyshevsky, Ya. B. (1941). "On Separation of a System into Quantum and Classical Parts". Zh. Eksp. Teor. Fiz. 11 (2–3): 222–225.
^Bracken, A. J. (2003). "Quantum mechanics as an approximation to classical mechanics in Hilbert space", Journal of Physics A: Mathematical and General, 36(23), L329.
von Neumann, J. (1932a). "Zur Operatorenmethode In Der Klassischen Mechanik". Annals of Mathematics (in German). 33 (3): 587–642. doi:10.2307/1968537. JSTOR1968537.
von Neumann, J. (1932b). "Zusatze Zur Arbeit 'Zur Operatorenmethode...'". Annals of Mathematics (in German). 33 (4): 789–791. doi:10.2307/1968225. JSTOR1968225.
H.R. Jauslin, D. Sugny, Dynamics of mixed classical-quantum systems, geometric quantization and coherent states, Lecture Note Series, IMS, NUS, Review Vol., August 13, 2009, arXiv:1111.5774
The Legacy of John von Neumann (Proceedings of Symposia in Pure Mathematics, vol 50), edited by James Glimm, John Impagliazzo, Isadore Singer. — Amata Graphics, 2006. — ISBN0821842196
U. Klein, From Koopman–von Neumann theory to quantum theory, Quantum Stud.: Math. Found. (2018) 5:219–227.[1]