Polynomial with finitely many terms of the form axⁿ where n ∈ Z
In mathematics, a Laurent polynomial (named
after Pierre Alphonse Laurent) in one variable over a field
is a linear combination of positive and negative powers of the variable with coefficients in
. Laurent polynomials in
form a ring denoted
.[1] They differ from ordinary polynomials in that they may have terms of negative degree. The construction of Laurent polynomials may be iterated, leading to the ring of Laurent polynomials in several variables. Laurent polynomials are of particular importance in the study of complex variables.
Definition
A Laurent polynomial with coefficients in a field
is an expression of the form

where
is a formal variable, the summation index
is an integer (not necessarily positive) and only finitely many coefficients
are non-zero. Two Laurent polynomials are equal if their coefficients are equal. Such expressions can be added, multiplied, and brought back to the same form by reducing similar terms. Formulas for addition and multiplication are exactly the same as for the ordinary polynomials, with the only difference that both positive and negative powers of
can be present:

and

Since only finitely many coefficients
and
are non-zero, all sums in effect have only finitely many terms, and hence represent Laurent polynomials.
Properties
- A Laurent polynomial over
may be viewed as a Laurent series in which only finitely many coefficients are non-zero.
- The ring of Laurent polynomials
is an extension of the polynomial ring
obtained by "inverting
". More rigorously, it is the localization of the polynomial ring in the multiplicative set consisting of the non-negative powers of
. Many properties of the Laurent polynomial ring follow from the general properties of localization.
- The ring of Laurent polynomials is a subring of the rational functions.
- The ring of Laurent polynomials over a field is Noetherian (but not Artinian).
- If
is an integral domain, the units of the Laurent polynomial ring
have the form
, where
is a unit of
and
is an integer. In particular, if
is a field then the units of
have the form
, where
is a non-zero element of
.
- The Laurent polynomial ring
is isomorphic to the group ring of the group
of integers over
. More generally, the Laurent polynomial ring in
variables is isomorphic to the group ring of the free abelian group of rank
. It follows that the Laurent polynomial ring can be endowed with a structure of a commutative, cocommutative Hopf algebra.
See also
References