Plot of (red), its standard deviation (blue) and its bound given by LIL (green). Notice the way it randomly switches from the upper bound to the lower bound. Both axes are non-linearly transformed (as explained in figure summary) to make this effect more visible.
In probability theory, the law of the iterated logarithm describes the magnitude of the fluctuations of a random walk. The original statement of the law of the iterated logarithm is due to A. Ya. Khinchin (1924).[1] Another statement was given by A. N. Kolmogorov in 1929.[2]
Statement
Let {Yn} be independent, identically distributed random variables with zero means and unit variances. Let Sn = Y1 + ... + Yn. Then
Let be independent random variables with zero means and finite variances. Let and . If and there exists a sequence of positive constants such that a.s. and
then we have
Note that, the first statement covers the case of the standard normal distribution, but the second does not.
On the other hand, the central limit theorem states that the sums Sn scaled by the factor n−1/2 converge in distribution to a standard normal distribution. By Kolmogorov's zero–one law, for any fixed M, the probability that the event
occurs is 0 or 1.
Then
so
An identical argument shows that
This implies that these quantities cannot converge almost surely. In fact, they cannot even converge in probability, which follows from the equality
and the fact that the random variables
are independent and both converge in distribution to
The law of the iterated logarithm provides the scaling factor where the two limits become different:
Thus, although the absolute value of the quantity is less than any predefined ε > 0 with probability approaching one, it will nevertheless almost surely be greater than ε infinitely often; in fact, the quantity will be visiting the neighborhoods of any point in the interval (-1,1) almost surely.
Exhibition of Limit Theorems and their interrelationship
Generalizations and variants
The law of the iterated logarithm (LIL) for a sum of independent and identically distributed (i.i.d.) random variables with zero mean and bounded increment dates back to Khinchin and Kolmogorov in the 1920s.
Since then, there has been a tremendous amount of work on the LIL for various kinds of
dependent structures and for stochastic processes. The following is a small sample of notable developments.
Hartman–Wintner (1940) generalized LIL to random walks with increments with zero mean and finite variance. De Acosta (1983) gave a simple proof of the Hartman–Wintner version of the LIL.[5]
Chung (1948) proved another version of the law of the iterated logarithm for the absolute value of a brownian motion.[6]
Strassen (1964) studied the LIL from the point of view of invariance principles.[7]
Stout (1970) generalized the LIL to stationary ergodic martingales.[8]
Wittmann (1985) generalized Hartman–Wintner version of LIL to random walks satisfying milder conditions.[9]
Vovk (1987) derived a version of LIL valid for a single chaotic sequence (Kolmogorov random sequence).[10] This is notable, as it is outside the realm of classical probability theory.
Yongge Wang (1996) showed that the law of the iterated logarithm holds for polynomial time pseudorandom sequences also.[11][12] The Java-based software testing tool tests whether a pseudorandom generator outputs sequences that satisfy the LIL.
Balsubramani (2014) proved a non-asymptotic LIL that holds over finite-time martingale sample paths.[13] This subsumes the martingale LIL as it provides matching finite-sample concentration and anti-concentration bounds, and enables sequential testing[14] and other applications.[15]
^A. Khinchine. "Über einen Satz der Wahrscheinlichkeitsrechnung", Fundamenta Mathematicae 6 (1924): pp. 9–20 (The author's name is shown here in an alternate transliteration.)
^Leo Breiman. Probability. Original edition published by Addison-Wesley, 1968; reprinted by Society for Industrial and Applied Mathematics, 1992. (See Sections 3.9, 12.9, and 12.10; Theorem 3.52 specifically.)
^R. Durrett. Probability: Theory and Examples. Fourth edition published by Cambridge University Press in 2010. (See Theorem 8.8.3.)