Liang–Barsky algorithmIn computer graphics, the Liang–Barsky algorithm (named after You-Dong Liang and Brian A. Barsky) is a line clipping algorithm. The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window. With these intersections, it knows which portion of the line should be drawn. So this algorithm is significantly more efficient than Cohen–Sutherland. The idea of the Liang–Barsky clipping algorithm is to do as much testing as possible before computing line intersections. The algorithm uses the parametric form of a straight line: A point is in the clip window, if and which can be expressed as the 4 inequalities where To compute the final line segment:
// Liang–Barsky line-clipping algorithm
#include<iostream>
#include<graphics.h>
#include<math.h>
using namespace std;
// this function gives the maximum
float maxi(float arr[], int n) {
float m = 0;
for (int i = 0; i < n; ++i)
if (m < arr[i])
m = arr[i];
return m;
}
// this function gives the minimum
float mini(float arr[], int n) {
float m = 1;
for (int i = 0; i < n; ++i)
if (m > arr[i])
m = arr[i];
return m;
}
void liang_barsky_clipper(float xmin, float ymin, float xmax, float ymax,
float x1, float y1, float x2, float y2) {
// defining variables
float p1 = -(x2 - x1);
float p2 = -p1;
float p3 = -(y2 - y1);
float p4 = -p3;
float q1 = x1 - xmin;
float q2 = xmax - x1;
float q3 = y1 - ymin;
float q4 = ymax - y1;
float exitParams[5], entryParams[5];
int exitIndex = 1, entryIndex = 1;
exitParams[0] = 1;
entryParams[0] = 0;
rectangle(xmin, ymin, xmax, ymax); // drawing the clipping window
if ((p1 == 0 && q1 < 0) || (p2 == 0 && q2 < 0) || (p3 == 0 && q3 < 0) || (p4 == 0 && q4 < 0)) {
outtextxy(80, 80, "Line is parallel to clipping window!");
return;
}
if (p1 != 0) {
float r1 = q1 / p1;
float r2 = q2 / p2;
if (p1 < 0) {
entryParams[entryIndex++] = r1;
exitParams[exitIndex++] = r2;
} else {
entryParams[entryIndex++] = r2;
exitParams[exitIndex++] = r1;
}
}
if (p3 != 0) {
float r3 = q3 / p3;
float r4 = q4 / p4;
if (p3 < 0) {
entryParams[entryIndex++] = r3;
exitParams[exitIndex++] = r4;
} else {
entryParams[entryIndex++] = r4;
exitParams[exitIndex++] = r3;
}
}
float clippedX1, clippedY1, clippedX2, clippedY2;
float u1, u2;
u1 = maxi(entryParams, entryIndex); // maximum of entry points
u2 = mini(exitParams, exitIndex); // minimum of exit points
if (u1 > u2) {
outtextxy(80, 80, "Line is outside the clipping window!");
return;
}
clippedX1 = x1 + (x2 - x1) * u1;
clippedY1 = y1 + (y2 - y1) * u1;
clippedX2 = x1 + (x2 - x1) * u2;
clippedY2 = y1 + (y2 - y1) * u2;
setcolor(CYAN);
line(clippedX1, clippedY1, clippedX2, clippedY2); // draw clipped segment
setlinestyle(1, 1, 0);
line(x1, y1, clippedX1, clippedY1); // original start to clipped start
line(x2, y2, clippedX2, clippedY2); // original end to clipped end
}
int main() {
cout << "\nLiang-Barsky Line Clipping";
cout << "\nThe system window layout is: (0,0) at bottom left and (631, 467) at top right";
cout << "\nEnter the coordinates of the window (xmin, ymin, xmax, ymax): ";
float xmin, ymin, xmax, ymax;
cin >> xmin >> ymin >> xmax >> ymax;
cout << "\nEnter the endpoints of the line (x1, y1) and (x2, y2): ";
float x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
int gd = DETECT, gm;
initgraph(&gd, &gm, ""); // using winbgim
liang_barsky_clipper(xmin, ymin, xmax, ymax, x1, y1, x2, y2);
getch();
closegraph();
}
See alsoAlgorithms used for the same purpose: References
External links |
Portal di Ensiklopedia Dunia