List of fusion experiments List of efforts toward artificial nuclear fusion
Target chamber of the Shiva laser , used for inertial confinement fusion experiments from 1978 until decommissioned in 1981
Plasma chamber of TFTR , used for magnetic confinement fusion experiments, which produced 11 MW of fusion power in 1994
Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.
The major division is between magnetic confinement and inertial confinement . In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of 1018 to 1022 m−3 and the linear dimensions in the range of 0.1 to 10 m . The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.
In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of 1031 to 1033 m−3 and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated , providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or 104 times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.
Magnetic confinement
Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies . Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect . The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.
Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.
The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids , but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.
Somewhat in a class by itself is the Z-pinch , which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.
The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.
Toroidal machine
Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator . The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.
Tokamak
Device name[ 1]
Status
Construction
Operation
Location
Organisation
Major/minor radius
B-field
Plasma current
Purpose
Image
T-1 (Tokamak-1)[ 2]
Shut down
1957
1958–1959
Moscow
Kurchatov Institute
0.625 m / 0.13 m
1 T
0.04 MA
First tokamak
T-2 (Tokamak-2)[ 2]
Recycled →FT-1
1959
1960–1970
Moscow
Kurchatov Institute
0.62 m / 0.22 m
1 T
0.04 MA
T-3 (Tokamak-3)[ 2]
Shut down
1960
1962–?
Moscow
Kurchatov Institute
1 m / 0.12 m
3.5 T
0.15 MA
Overcame Bohm diffusion by a factor of 10, temperature 10 MK , confinement time 10 ms
T-5 (Tokamak-5)[ 2]
Shut down
?
1962–1970
Moscow
Kurchatov Institute
0.625 m / 0.15 m
1.2 T
0.06 MA
Investigation of plasma equilibrium in vertical and horizontal direction
TM-1
Shut down
?
?
Moscow
Kurchatov Institute
TM-2
Shut down
?
1965
Moscow
Kurchatov Institute
TM-3
Shut down
?
1970
Moscow
Kurchatov Institute
FT-1[ 2]
Recycled →CASTOR
T-2
1972–2002
Saint Petersburg
Ioffe Institute
0.62 m / 0.22 m
1.2 T
0.05 MA
ST (Symmetric Tokamak)
Shut down
Model C
1970–1974
Princeton
Princeton Plasma Physics Laboratory
1.09 m / 0.13 m
5.0 T
0.13 MA
First American tokamak, converted from Model C stellarator
T-6 (Tokamak-6)
Shut down
?
1970–1974
Moscow
Kurchatov Institute
0.7 m / 0.25 m
1.5 T
0.22 MA
TUMAN-2, 2A
Shut down
?
1971–1985
Saint Petersburg
Ioffe Institute
0.4 m / 0.08 m
1.5 T
0.012 MA
ORMAK (Oak Ridge tokaMAK)
Shut down
1971–1976
Oak Ridge
Oak Ridge National Laboratory
0.8 m / 0.23 m
2.5 T
0.34 MA
First to achieve 20 MK plasma temperature
Doublet II
Shut down
1972–1974
San Diego
General Atomics
0.63 m / 0.08 m
0.95 T
0.21 MA
ATC (Adiabatic Toroidal Compressor)
Shut down
1971–1972
1972–1976
Princeton
Princeton Plasma Physics Laboratory
0.88 m / 0.11 m
2 T
0.05 MA
Demonstrate compressional plasma heating
T-9 (Tokamak-9)
Shut down
?
1972–1977
Moscow
Kurchatov Institute
0.36 m / 0.07 m
1 T
TO-1
Shut down
?
1972–1978
Moscow
Kurchatov Institute
0.6 m / 0.13 m
1.5 T
0.07 MA
Alcator A (Alto Campo Toro)
Shut down
?
1972–1978
Cambridge
Massachusetts Institute of Technology
0.54 m / 0.10 m
9.0 T
0.3 MA
JFT-2 (JAERI Fusion Torus 2)
Shut down
?
1972–1982
Naka
Japan Atomic Energy Research Institute
0.9 m / 0.25 m
1.8 T
0.25 MA
Turbulent Tokamak Frascati (TTF, torello)
Shut down
1973
Frascati
ENEA
0.3 m / 0.04 m
1 T
0.005 MA
Study of turbulent plasma heating
Pulsator[ 3]
Shut down
1970–1973
1973–1979
Garching
Max Planck Institute for Plasma Physics
0.7 m / 0.12 m
2.7 T
0.125 MA
Discovery of high-density operation with tokamaks
TFR (Tokamak de Fontenay-aux-Roses)
Shut down
1973–1984
Fontenay-aux-Roses
CEA
0.98 m / 0.2 m
6 T
0.49 MA
T-4 (Tokamak-4)[ 2]
Shut down
?
1974–1978
Moscow
Kurchatov Institute
0.9 m / 0.16 m
5 T
0.3 MA
Observed fast thermal quench before major plasma disruptions
Doublet IIA
Shut down
1974–1979
San Diego
General Atomics
0.66 m / 0.15 m
0.76 T
0.35 MA
Petula-B
Shut down
?
1974–1986
Grenoble
CEA
0.72 m / 0.18 m
2.7 T
0.23 MA
T-10 (Tokamak-10)[ 2]
Operational
1975–
Moscow
Kurchatov Institute
1.50 m / 0.37 m
4 T
0.8 MA
Largest tokamak of its time
T-11 (Tokamak-11)
Shut down
?
1975–1984
Moscow
Kurchatov Institute
0.7 m / 0.25 m
1 T
PLT (Princeton Large Torus)
Shut down
1972–1975
1975–1986
Princeton
Princeton Plasma Physics Laboratory
1.32 m / 0.42 m
4 T
0.7 MA
First to achieve 1 MA plasma current
Divertor Injection Tokamak Experiment (DITE)
Shut down
1975–1989
Culham
United Kingdom Atomic Energy Authority
1.17 m / 0.27 m
2.7 T
0.26 MA
JIPP T-II
Shut down
?
1976
Nagoya
Nagoya University
0.91 m / 0.17 m
3 T
0.16 MA
TNT-A
Shut down
?
1976
Tokyo
Tokyo University
0.4 m / 0.09 m
0.42 T
0.02 MA
T-8 (Tokamak-8)[ 2]
Shut down
?
1976–?
Moscow
Kurchatov Institute
0.28 m / 0.048 m
0.9 T
0.024 MA
First D-shaped tokamak
Microtor[ 4]
Shut down
?
1976–1983?
Los Angeles
UCLA
0.3 m / 0.1 m
2.5 T
0.12 MA
Plasma impurity control and diagnostic development
Macrotor[ 4]
Shut down
?
1970s–80s
Los Angeles
UCLA
0.9 m / 0.4 m
0.4 T
0.1 MA
Understanding plasma rotation driven by radial current
TUMAN-3[ 2]
Operational
?
1977– (1990–, 3M)
Saint Petersburg
Ioffe Institute
0.55 m / 0.23 m
3 T
0.18 MA
Study adiabatic compression, RF and NB heating, H-mode and parametric instability
Thor[ 5]
Shut down
?
Milano
University of Milano
0.52 m / 0.195 m
1 T
0.055 MA
FT (Frascati Tokamak)
Shut down
1978
Frascati
ENEA
0.83 m / 0.20 m
10 T
0.8 MA
PDX (Poloidal Divertor Experiment)
Shut down
?
1978–1983
Princeton
Princeton Plasma Physics Laboratory
1.4 m / 0.4 m
2.4 T
0.5 MA
ISX-B
Shut down
?
1978–1984
Oak Ridge
Oak Ridge National Laboratory
0.93 m / 0.27 m
1.8 T
0.2 MA
Attempt high-beta operation
Doublet III
Shut down
1978–1985
San Diego
General Atomics
1.45 m / 0.45 m
2.6 T
0.61 MA
T-12 (Tokamak-12)
Shut down
?
1978–1985
Moscow
Kurchatov Institute
0.36 m / 0.08 m
1 T
0.03 MA
Alcator C (Alto Campo Toro)
Shut down
?
1978–1986
Cambridge
Massachusetts Institute of Technology
0.64 m / 0.16 m
13 T
0.8 MA
T-7 (Tokamak-7)[ 2]
Recycled →HT-7 [ 6]
?
1979–1985
Moscow
Kurchatov Institute
1.2 m / 0.31 m
3 T
0.3 MA
First tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment)[ 7]
Recycled →HL-2A
1973–1980
1980–1990
Garching
Max-Planck-Institut für Plasmaphysik
1.65 m / 0.4 m
2.8 T
0.5 MA
Discovery of the H-mode in 1982
FT-2[ 2]
Operational
?
1980–
Saint Petersburg
Ioffe Institute
0.55 m / 0.08 m
3 T
0.05 MA
H-mode physics, LH heating
TEXTOR (Tokamak Experiment for Technology Oriented Research )[ 8] [ 9]
Shut down
1976–1980
1981–2013
Jülich
Forschungszentrum Jülich
1.75 m / 0.47 m
2.8 T
0.8 MA
Study plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor)[ 10]
Shut down
1980–1982
1982–1997
Princeton
Princeton Plasma Physics Laboratory
2.4 m / 0.8 m
5.9 T
3 MA
Attempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MK
Tokamak de Varennes (TdeV)
Shut down
?
1983–1997
Montreal
National Research Council Canada
0.83 m / 0.27 m
1.5 T
0.3 MA
[ 11]
JFT-2M (JAERI Fusion Torus 2M)
Shut down
?
1983–2004
Naka
Japan Atomic Energy Research Institute
1.3 m / 0.35 m
2.2 T
0.5 MA
JET (Joint European Torus)[ 12]
Shut down
1978–1983
1983–2023
Culham
United Kingdom Atomic Energy Authority
2.96 m / 0.96 m
4 T
7 MA
Records for fusion output power 16.1 MW (1997), fusion energy 69 MJ (2023)
Novillo [ 13] [ 14]
Shut down
NOVA-II
1983–2004
Mexico City
Instituto Nacional de Investigaciones Nucleares
0.23 m / 0.06 m
1 T
0.01 MA
Study plasma-wall interactions
JT-60 (Japan Torus-60)[ 15]
Recycled →JT-60SA
1985–2010
Naka
Japan Atomic Energy Research Institute
3.4 m / 1.0 m
4 T
3 MA
High-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak)
Shut down
?
1986–199?
Los Angeles
UCLA
1.5 m / 0.4 m
0.2 T
0.05 MA
H-mode studies
DIII-D [ 16]
Operational
1986[ 17]
1986–
San Diego
General Atomics
1.67 m / 0.67 m
2.2 T
3 MA
Tokamak Optimization
STOR-M (Saskatchewan Torus-Modified)[ 18]
Operational
1987–
Saskatoon
Plasma Physics Laboratory (Saskatchewan)
0.46 m / 0.125 m
1 T
0.06 MA
Study plasma heating and anomalous transport
T-15 [ 2]
Recycled →T-15MD
1983–1988
1988–1995
Moscow
Kurchatov Institute
2.43 m / 0.78 m
3.6 T
1 MA
First superconducting tokamak, pulse duration 1.5 s
Tore Supra [ 19]
Recycled →WEST
1988–2011
Cadarache
Département de Recherches sur la Fusion Contrôlée
2.25 m / 0.7 m
4.5 T
2 MA
Large superconducting tokamak with active cooling
ADITYA (tokamak)
Operational
1989–
Gandhinagar
Institute for Plasma Research
0.75 m / 0.25 m
1.2 T
0.25 MA
COMPASS (COMPact ASSembly)[ 20] [ 21]
Operational
1980–
1989–
Prague
Institute of Plasma Physics, Czech Academy of Sciences
0.56 m / 0.23 m
2.1 T
0.32 MA
Plasma physics studies for ITER
FTU (Frascati Tokamak Upgrade )
Operational
1990–
Frascati
ENEA
0.935 m / 0.35 m
8 T
1.6 MA
START (Small Tight Aspect Ratio Tokamak)[ 22]
Recycled →Proto-Sphera
1990–1998
Culham
United Kingdom Atomic Energy Authority
0.3 m /?
0.5 T
0.31 MA
First full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment)
Operational
1991–
Garching
Max-Planck-Institut für Plasmaphysik
1.65 m / 0.5 m
2.6 T
1.4 MA
Alcator C-Mod (Alto Campo Toro)[ 23]
Shut down
1986–
1991–2016
Cambridge
Massachusetts Institute of Technology
0.68 m / 0.22 m
8 T
2 MA
Record plasma pressure 2.05 bar
ISTTOK (Instituto Superior Técnico TOKamak)[ 24]
Operational
1992–
Lisbon
Instituto de Plasmas e Fusão Nuclear
0.46 m / 0.085 m
2.8 T
0.01 MA
TCV (Tokamak à Configuration Variable )[ 25]
Operational
1992–
Lausanne
École Polytechnique Fédérale de Lausanne
0.88 m / 0.25 m
1.43 T
1.2 MA
Confinement studies
HBT-EP (High Beta Tokamak-Extended Pulse)
Operational
1993–
New York City
Columbia University Plasma Physics Laboratory
0.92 m / 0.15 m
0.35 T
0.03 MA
High-Beta tokamak
HT-7 (Hefei Tokamak-7)
Shut down
1991–1994 (T-7 )
1995–2013
Hefei
Hefei Institutes of Physical Science
1.22 m / 0.27 m
2 T
0.2 MA
China's first superconducting tokamak
Pegasus Toroidal Experiment [ 26]
Operational
?
1996–
Madison
University of Wisconsin–Madison
0.45 m / 0.4 m
0.18 T
0.3 MA
Extremely low aspect ratio
NSTX (National Spherical Torus Experiment)[ 27]
Operational
1999–
Plainsboro Township
Princeton Plasma Physics Laboratory
0.85 m / 0.68 m
0.3 T
2 MA
Study the spherical tokamak concept
Globus-M (UNU Globus-M)[ 28]
Operational
1999–
Saint Petersburg
Ioffe Institute
0.36 m / 0.24 m
0.4 T
0.3 MA
Study the spherical tokamak concept
ET (Electric Tokamak)
Recycled →ETPD
1998
1999–2006
Los Angeles
UCLA
5 m / 1 m
0.25 T
0.045 MA
Largest tokamak of its time
TCABR (Tokamak Chauffage Alfvén Brésilien )
Operational
1980–1999
1999–
Lausanne, Sao Paulo
University of Sao Paulo
0.615 m / 0.18 m
1.1 T
0.10 MA
Most important tokamak in the southern hemisphere
CDX-U (Current Drive Experiment-Upgrade)
Recycled →LTX
2000–2005
Princeton
Princeton Plasma Physics Laboratory
0.3 m /?
0.23 T
0.03 MA
Study Lithium in plasma walls
MAST (Mega-Ampere Spherical Tokamak)[ 29]
Recycled →MAST-Upgrade
1997–1999
2000–2013
Culham
United Kingdom Atomic Energy Authority
0.85 m / 0.65 m
0.55 T
1.35 MA
Investigate spherical tokamak for fusion
HL-2A (Huan-Liuqi-2A)
Operational
2000–2002
2002–2018
Chengdu
Southwestern Institute of Physics
1.65 m / 0.4 m
2.7 T
0.43 MA
H-mode physics, ELM mitigation
SST-1 (Steady State Superconducting Tokamak)[ 30]
Operational
2001–
2005–
Gandhinagar
Institute for Plasma Research
1.1 m / 0.2 m
3 T
0.22 MA
Produce a 1000 s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak)[ 31]
Operational
2000–2005
2006–
Hefei
Hefei Institutes of Physical Science
1.85 m / 0.43 m
3.5 T
0.5 MA
Superheated plasma for over 1066 s and 20 s at 160 M°C[ 32] [ 33]
J-TEXT (Joint TEXT)
Operational
TEXT (Texas EXperimental Tokamak)
2007–
Wuhan
Huazhong University of Science and Technology
1.05 m / 0.26 m
2.0 T
0.2 MA
Develop plasma control
KSTAR (Korea Superconducting Tokamak Advanced Research)[ 34]
Operational
1998–2007
2008–
Daejeon
National Fusion Research Institute
1.8 m / 0.5 m
3.5 T
2 MA
Tokamak with fully superconducting magnets, 48 s -long operation at 100 MK[ 35]
LTX (Lithium Tokamak Experiment)
Operational
2005–2008
2008–
Princeton
Princeton Plasma Physics Laboratory
0.4 m /?
0.4 T
0.4 MA
Study Lithium in plasma walls
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak)[ 36] [ 37]
Operational
2008–
Kasuga
Kyushu University
0.68 m / 0.4 m
0.25 T
0.02 MA
Study steady state operation of a Spherical Tokamak
Kazakhstan Tokamak for Material testing (KTM)
Operational
2000–2010
2010–
Kurchatov
National Nuclear Center of the Republic of Kazakhstan
0.86 m / 0.43 m
1 T
0.75 MA
Testing of wall and divertor
ST25-HTS[ 38]
Operational
2012–2015
2015–
Culham
Tokamak Energy Ltd
0.25 m / 0.125 m
0.1 T
0.02 MA
Steady state plasma
WEST (Tungsten Environment in Steady-state Tokamak)
Operational
2013–2016
2016–
Cadarache
Département de Recherches sur la Fusion Contrôlée
2.5 m / 0.5 m
3.7 T
1 MA
Superconducting tokamak with active cooling
ST40[ 39]
Operational
2017–2018
2018–
Didcot
Tokamak Energy Ltd
0.4 m / 0.3 m
3 T
2 MA
First high field spherical tokamak, reached 100 MK plasma
MAST-U (Mega-Ampere Spherical Tokamak Upgrade)[ 40]
Operational
2013–2019
2020–
Culham
United Kingdom Atomic Energy Authority
0.85 m / 0.65 m
0.92 T
2 MA
Test new exhaust concepts for a spherical tokamak
HL-3 / HL-2M (Huan-Liuqi-2M)[ 41]
Operational
2018–2019
2020–
Leshan
Southwestern Institute of Physics
1.78 m / 0.65 m
2.2 T
1.2 MA
Elongated plasma with 200 MK
JT-60SA (Japan Torus-60 super, advanced)[ 42]
Operational
2013–2020
2021–
Naka
Japan Atomic Energy Research Institute
2.96 m / 1.18 m
2.25 T
5.5 MA
Optimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation
T-15MD
Operational
2010–2020
2021–
Moscow
Kurchatov Institute
1.48 m / 0.67 m
2 T
2 MA
Hybrid fusion/fission reactor
IGNITOR [ 43]
Cancelled 2022[ 44]
-
-
Troitzk
ENEA
1.32 m / 0.47 m
13 T
11 MA
Compact fusion reactor with self-sustained plasma and 100 MW of planned fusion power
HH70 (HongHuang 70)[ 45] [ 46]
Operational
2022–2024
2024–
Shanghai
Energy Singularity
0.75 m / 0.31 m
2.5 T
REBCO High-temperature superconducting coils
SPARC [ 47] [ 48] [ 49] [ 50] [ 51]
Under construction
2021–
2026?
Devens, MA
Commonwealth Fusion Systems and MIT Plasma Science and Fusion Center
1.85 m / 0.57 m
12.2 T
8.7 MA
Compact, high-field tokamak with ReBCO coils and 100 MW planned fusion power
ITER [ 52]
Under construction
2013–2034?
2034?
Cadarache
ITER Council
6.2 m / 2.0 m
5.3 T
15 MA ?
Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power
DTT (Divertor Tokamak Test facility)[ 53] [ 54] [ 55]
Planned
2022–2029?
2029?
Frascati
ENEA
2.19 m / 0.70 m
5.85 T ?
5.5 MA ?
Superconducting tokamak to study power exhaust
SST-2 (Steady State Tokamak-2)[ 56]
Planned
2027?
Gujarat
Institute for Plasma Research
4.42 m / 1.47 m
5.42 T
11.2 MA
Full-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor)[ 57]
Planned
≥2024
2030?
Institute of Plasma Physics, Chinese Academy of Sciences
7.2 m / 2.2 m ?
6.5 T ?
14 MA ?
Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
ST-F1 (Spherical Tokamak - Fusion 1)[ 58]
Planned
2027?
Didcot
Tokamak Energy Ltd
1.4 m / 0.8 m ?
4 T
5 MA
Spherical tokamak with Q=3 and hundreds of MW planned electrical output (no longer mentioned by company as of 2024)
STX (ST80-HTS)
Planned
2026?
2030?
Culham
Tokamak Energy Ltd
Spherical tokamak capable of 15min-pulsed operation[ 59] [ 60]
ST-E1
Planned
2030s?
Culham
Tokamak Energy Ltd
Spherical tokamak with 200 MW planned net electric output[ 61]
STEP (Spherical Tokamak for Energy Production )
Planned
2032-2040
2040 D-D Mid 2040s DT Campaign
West Burton, Nottinghamshire
United Kingdom Atomic Energy Authority
3 m / 2 m ?
?
16.5 MA ?
Spherical tokamak with 100 MW planned electrical output[ 62]
JA-DEMO
Planned
2030?
2050?
?
8.5 m / 2.4 m[ 63]
5.94 T
12.3 MA
Prototype for development of Commercial Fusion Reactors 1.5–2 GW Fusion output.[ 64]
K-DEMO (Korean fusion demonstration tokamak reactor)[ 65]
Planned
2037?
National Fusion Research Institute
6.8 m / 2.1 m
7 T
12 MA ?
Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power
DEMO (DEMOnstration Power Station)
Planned
2040?
2050?
?
9 m / 3 m ?
6 T ?
20 MA ?
Prototype for a commercial fusion reactor
Stellarator
Device name
Status
Construction
Operation
Type
Location
Organisation
Major/minor radius
B-field
Purpose
Image
Model A
Shut down
1952–1953
1953–?
Figure-8
Princeton
Princeton Plasma Physics Laboratory
0.3 m / 0.02 m
0.1 T
First stellarator, table-top device
Model B
Shut down
1953–1954
1954–1959
Figure-8
Princeton
Princeton Plasma Physics Laboratory
0.3 m / 0.02 m
5 T
Development of plasma diagnostics
Model B-1
Shut down
?–1959
Figure-8
Princeton
Princeton Plasma Physics Laboratory
0.25 m / 0.02 m
5 T
Yielded 1 MK plasma temperatures, showed cooling by X-ray radiation from impurities
Model B-2
Shut down
1957
Figure-8
Princeton
Princeton Plasma Physics Laboratory
0.3 m / 0.02 m
5 T
Electron temperatures up to 10 MK
Model B-3
Shut down
1957
1958–
Figure-8
Princeton
Princeton Plasma Physics Laboratory
0.4 m / 0.02 m
4 T
Last figure-8 device, confinement studies of ohmically heated plasma
Model B-64
Shut down
1955
1955
Square
Princeton
Princeton Plasma Physics Laboratory
? m/ 0.05 m
1.8 T
Model B-65
Shut down
1957
1957
Racetrack
Princeton
Princeton Plasma Physics Laboratory
Model B-66
Shut down
1958
1958–?
Racetrack
Princeton
Princeton Plasma Physics Laboratory
Wendelstein 1-A
Shut down
1960
Racetrack
Garching
Max-Planck-Institut für Plasmaphysik
0.35 m / 0.02 m
2 T
ℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery"
Wendelstein 1-B
Shut down
1960
Racetrack
Garching
Max-Planck-Institut für Plasmaphysik
0.35 m / 0.02 m
2 T
ℓ=2
Model C
Recycled →ST
1957–1961
1961–1969
Racetrack
Princeton
Princeton Plasma Physics Laboratory
1.9 m / 0.07 m
3.5 T
Suffered from large plasma losses by Bohm diffusion through "pump-out"
L-1
Shut down
1963
1963–1971
round
Moscow
Lebedev Physical Institute
0.6 m / 0.05 m
1 T
First Soviet stellarator, overcame Bohm diffusion
SIRIUS
Shut down
1964–?
Racetrack
Kharkiv
Kharkiv Institute of Physics and Technology (KIPT)
TOR-1
Shut down
1967
1967–1973
Moscow
Lebedev Physical Institute
0.6 m / 0.05 m
1 T
TOR-2
Shut down
?
1967–1973
Moscow
Lebedev Physical Institute
0.63 m / 0.036 m
2.5 T
Uragan-1
Shut down
1960–1967
1967–?
Racetrack
Kharkiv
National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)
1.1 m / 0.1 m
1 T
Overcame Bohm-diffusion by a factor of 30
CLASP (Closed Line And Single Particle)[ 66]
Shut down
?
1967–?
Culham
United Kingdom Atomic Energy Authority
0.3 m / 0.056 m
0.1 T
Study confinement of electrons in a high-shear stellarator
TWIST[ 66]
Shut down
?
1967–?
Culham
United Kingdom Atomic Energy Authority
0.32 m / 0.045 m
0.3 T
Study turbulent heating
Proto-CLEO[ 66]
Shut down
?
1968–?
single-turn helical winding inside toroidal field conductors
Culham, Madison
United Kingdom Atomic Energy Authority
0.4 m / 0.05 m
0.5 T
confirmed plasma confinement times of neoclassical theory
TORSO[ 66]
Shut down
?
1972–?
Ultimate torsatron
Culham
United Kingdom Atomic Energy Authority
0.4 m / 0.05 m
2 T
CLEO[ 66]
Shut down
?
1974–?
Culham
United Kingdom Atomic Energy Authority
0.9 m / 0.125 m
2 T
Study of particle transport and beta limits, reached similar performance as tokamaks
Wendelstein 2-A
Shut down
1965–1968
1968–1974
Heliotron
Garching
Max-Planck-Institut für Plasmaphysik
0.5 m / 0.05 m
0.6 T
Good plasma confinement
Saturn[ 67]
Shut down
1970
1970–?
Torsatron
Kharkiv
Kharkiv Institute of Physics and Technology
0.36 m / 0.08 m
1 T
first Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT
Wendelstein 2-B
Shut down
?–1970
1971–?
Heliotron
Garching
Max-Planck-Institut für Plasmaphysik
0.5 m / 0.055 m
1.25 T
Demonstrated similar performance as tokamaks
Vint-20[ 68]
Shut down
1972
1973–?
Torsatron
Kharkiv
Kharkiv Institute of Physics and Technology
0.315 m / 0.0725 m
1.8 T
single-pole ℓ=1, m=13 field periods
L-2
Shut down
?
1975–?
Moscow
Lebedev Physical Institute
1 m / 0.11 m
2.0 T
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung)
Recycled →HIDRA
1972–1975
1975–2013
Classical stellarator
Greifswald
Max-Planck-Institut für Plasmaphysik
0.72 m / 0.15 m
1.4 T
Test lower hybrid heating
Wendelstein 7-A
Shut down
?
1975–1985
Classical stellarator
Garching
Max-Planck-Institut für Plasmaphysik
2 m / 0.1 m
3.5 T
First "pure" stellarator without plasma current, solved stellarator heating problem
Heliotron-E
Shut down
?
1980–?
Heliotron
2.2 m / 0.2 m
1.9 T
Heliotron-DR
Shut down
?
1981–?
Heliotron
0.9 m / 0.07 m
0.6 T
Uragan-3 (M [uk ] )[ 69]
Operational
?
1982–?[ 70] M: 1990–
Torsatron
Kharkiv
National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)
1.0 m / 0.12 m
1.3 T
?
Auburn Torsatron (AT)
Shut down
?
1984–1990
Torsatron
Auburn
Auburn University
0.58 m / 0.14 m
0.2 T
Wendelstein 7-AS
Shut down
1982–1988
1988–2002
Modular, advanced stellarator
Garching
Max-Planck-Institut für Plasmaphysik
2 m / 0.13 m
2.6 T
First computer-optimized stellarator, first H-mode in a stellarator in 1992
Advanced Toroidal Facility (ATF)
Shut down
1984–1988[ 71]
1988–1994
Torsatron
Oak Ridge
Oak Ridge National Laboratory
2.1 m / 0.27 m
2.0 T
First large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operation
Compact Helical System (CHS)
Shut down
?
1989–?
Heliotron
Toki
National Institute for Fusion Science
1 m / 0.2 m
1.5 T
Compact Auburn Torsatron (CAT)
Shut down
?–1990
1990–2000
Torsatron
Auburn
Auburn University
0.53 m / 0.11 m
0.1 T
Study magnetic flux surfaces
H-1 (Heliac-1)[ 72]
Operational
1992–
Heliac
Canberra ,
Research School of Physical Sciences and Engineering , Australian National University
1.0 m / 0.19 m
0.5 T
shipped to China in 2017
TJ-K (Tokamak de la Junta Kiel)[ 73]
Operational
TJ-IU (1999)
1994–
Torsatron
Kiel, Stuttgart
University of Stuttgart
0.60 m / 0.10 m
0.5 T
One helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005
TJ-II (Tokamak de la Junta II)[ 74]
Operational
1991–1996
1997–
flexible Heliac
Madrid
National Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
1.5 m / 0.28 m
1.2 T
Study plasma in flexible configuration
LHD (Large Helical Device)[ 75]
Operational
1990–1998
1998–
Heliotron
Toki
National Institute for Fusion Science
3.5 m / 0.6 m
3 T
Demonstrated long-term operation of large superconducting coils
HSX (Helically Symmetric Experiment)[ 76]
Operational
1999–
Modular, quasi-helically symmetric
Madison
University of Wisconsin–Madison
1.2 m / 0.15 m
1 T
Investigate plasma transport in quasi-helically-symmetric field, similar to tokamaks
Heliotron J [ 77]
Operational
2000–
Heliotron
Kyoto
Institute of Advanced Energy
1.2 m / 0.1 m
1.5 T
Study helical-axis heliotron configuration
Columbia Non-neutral Torus (CNT)
Operational
?
2004–
Circular interlocked coils
New York City
Columbia University
0.3 m / 0.1 m
0.2 T
Study of non-neutral (mostly electron) plasmas
Uragan-2 (M )[ 69]
Operational
1988–2006
2006–[ 78]
Heliotron, Torsatron
Kharkiv
National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)
1.7 m / 0.22 m
2.4 T
ℓ=2 Torsatron
Quasi-poloidal stellarator (QPS)[ 79] [ 80]
Cancelled
2001–2007
–
Modular
Oak Ridge
Oak Ridge National Laboratory
0.9 m / 0.33 m
1.0 T
Stellarator research
NCSX (National Compact Stellarator Experiment)
Cancelled
2004–2008
–
Helias
Princeton
Princeton Plasma Physics Laboratory
1.4 m / 0.32 m
1.7 T
High-β stability
Compact Toroidal Hybrid (CTH)
Operational
?
2007?–
Torsatron
Auburn
Auburn University
0.75 m / 0.2 m
0.7 T
Hybrid stellarator/tokamak
HIDRA (Hybrid Illinois Device for Research and Applications)[ 81]
Operational
2013–2014 (WEGA)
2014–
?
Urbana , IL
University of Illinois
0.72 m / 0.19 m
0.5 T
Stellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactions
UST_2[ 82]
Operational
2013
2014–
modular three period quasi-isodynamic
Madrid
Charles III University of Madrid
0.29 m / 0.04 m
0.089 T
3D-printed stellarator
Wendelstein 7-X [ 83]
Operational
1996–2022
2015–
Helias
Greifswald
Max-Planck-Institut für Plasmaphysik
5.5 m / 0.53 m
3 T
Steady-state plasma in large fully optimized stellarator
SCR-1 (Stellarator of Costa Rica)
Operational
2011–2015
2016–
Modular
Cartago
Costa Rica Institute of Technology
0.14 m / 0.042 m
0.044 T
MUSE[ 84]
Operational
2022–2023
2023–
Quasiaxi-symmetrical
Princeton
Princeton Plasma Physics Laboratory
0.3 m / 0.075 m
0.15 T
First stellarator with permanent magnets
CFQS (Chinese First Quasi-Axisymmetric Stellarator)[ 85]
Under construction
2017–
Helias
Chengdu
Southwest Jiaotong University, National Institute for Fusion Science in Japan
1 m / 0.25 m
1 T
m=2 quasi-axisymmetric stellarator, modular
EFPP (European Fusion Power Plant)[ 86]
Planned
2030 ?
2045 ?
Helias
Gauss Fusion
7– 9 T ?
Fusion power plant with 2– 3 GW output
Tabletop/Toytop, Lawrence Livermore National Laboratory , Livermore CA.
DCX/DCX-2, Oak Ridge National Laboratory
OGRA (Odin GRAm neitronov v sutki, one gram of neutrons per day), Akademgorodok, Russia. A 20-meter-long pipe
Baseball I/Baseball II Lawrence Livermore National Laboratory , Livermore CA.
2X/2XIII/2XIII-B, Lawrence Livermore National Laboratory , Livermore CA.
TMX, TMX-U Lawrence Livermore National Laboratory , Livermore CA.
MFTF Lawrence Livermore National Laboratory , Livermore CA.
Gas Dynamic Trap at Budker Institute of Nuclear Physics , Akademgorodok, Russia.
Perhapsatron (1953, USA)
ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)
Reversed field pinch (RFP)
ETA-BETA II in Padua, Italy (1979–1989)
RFX (Reversed-Field eXperiment), Consorzio RFX, Padova, Italy[ 87]
MST (Madison Symmetric Torus), University of Wisconsin–Madison , United States[ 88]
T2R, Royal Institute of Technology , Stockholm, Sweden
TPE-RX, AIST , Tsukuba, Japan
KTX (Keda Torus eXperiment) in China (since 2015)[ 89]
Other toroidal machines
TMP (Tor s Magnitnym Polem , torus with magnetic field): A porcelain torus with major radius 80 cm , minor radius 13 cm , toroidal field of 1.5 T and plasma current 0.25 MA , predecessor to the first tokamak (1955, USSR)
Open field lines
Inertial confinement
Laser-driven
Device name
Status
Construction
Operation
Description
Peak laser power
Pulse energy
Fusion yield
Location
Organisation
Image
4 pi laser
Shut down
196?
Semiconductor laser
5 GW
12 J
Livermore
LLNL
Long path laser
Shut down
1972
1972
First ICF laser with neodymium doped glass (Nd:glass) as lasing medium
5 GW
50 J
Livermore
LLNL
Single Beam System (SBS) "67"
Shut down
1971-1973
1973
Single-beam CO2 laser [ 92]
200 GW
1 kJ
Los Alamos
LANL
Double Bounce Illumination System (DBIS)
Shut down
1972-1974
1974-1990
First private laser fusion effort, YAG laser, neutron yield 104 to 3× 105 neutrons
1 kJ
≈ 100 nJ
Ann Arbor, Michigan
KMS Fusion
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laser
Shut down
1972-1975
1975-?
Nd:glass laser
100 GW
40 J
RAF Aldermaston
AWE
Cyclops laser
Shut down
1975
1975
Single-beam Nd:glass laser, prototype for Shiva [ 93]
1 TW
270 J
Livermore
LLNL
Janus laser
Shut down
1974-1975
1975
Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium
1 TW
10 J
Livermore
LLNL
Gemini laser , Dual-Beam Module (DBM)
Shut down
≤ 1975
1976
Two-beam CO2 laser , tests for Helios
5 TW
2.5 kJ
Los Alamos
LANL
Argus laser
Shut down
1976
1976-1981
Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva
4 TW
2 kJ
≈ 3 mJ
Livermore
LLNL
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra)[ 94]
Operational
1976-1977
1977-
8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005[ 95]
1 PW
2.6 kJ
Didcot
RAL
Shiva laser
Shut down
1977
1977-1981
20-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition
30 TW
10.2 kJ
≈ 0.1 J
Livermore
LLNL
Helios laser , Eight-Beam System (EBS)
Shut down
1975-1978
1978
8-beam CO2 laser ; Media at Wikimedia Commons
20 TW
10 kJ
Los Alamos
LANL
HELEN (High Energy Laser Embodying Neodymium)
Shut down
1976-1979
1979-2009
Two-beam Nd:glass laser
1 TW
200 J
Didcot
RAL
ISKRA-4
Operational
-1979
1979-
8-beam iodine gas laser, prototype for ISKRA-5 [ 96]
10 TW
2 kJ
6 mJ
Sarov
RFNC-VNIIEF
Sprite laser [ 94]
Shut down
1981-1983
1983-1995
First high-power Krypton fluoride laser used for target irradiation, λ= 249 nm
1 TW
7.5 J
Didcot
RAL
Gekko XII
Operational
1983-
12-beam, Nd:glass laser
500 TW
10 kJ
Osaka
Institute for Laser Engineering
Novette laser
Shut down
1981-1983
1983-1984
Nd:glass laser to validate the Nova design, first X-ray laser[ 97]
13 TW
18 kJ
Livermore
LLNL
Antares laser , High Energy Gas Laser Facility (HEGLF)
Shut down
1983[ 98]
24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling[ 97]
200 TW
40 kJ
Los Alamos
LANL
PHAROS laser
Operational
198?
Two-beam Nd:glass laser
300 GW
1 kJ
Washington D.C.
NRL
Nova laser
Shut down
1984-1999
10-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF
1.3 PW
120 kJ
30 J
Livermore
LLNL
ISKRA-5
Operational
-1989
12-beam iodine gas laser, fusion yield 1010 to 1011 neutrons[ 96]
100 TW
30 kJ
0.3 J
Sarov
RFNC-VNIIEF
Aurora laser
Shut down
≤ 1988-1989
1990
96-beam Krypton fluoride laser
≈ 300 GW
1.3 kJ
Los Alamos
LANL
Shenguang-I
Shut down
1990
2-beam Nd:glass laser, λ= 1053 nm[ 99]
1.6 kJ
100 nJ[ 100]
China
Joint Laboratory of High Power Laser and Physics
PALS , formerly "Asterix IV"
Operational
-1991
1991-
Iodine gas laser , λ= 1315 nm
3 TW
1 kJ
Garching , Prague
MPQ , CAS
Trident laser
Operational
198?-1992
1992-2017
3-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns
200 TW
500 J
Los Alamos
LANL
Nike laser
Operational
≤ 1991-1994
1994-
56-beam, most-capable Krypton fluoride laser for laser target interactions[ 101] [ 102]
2.6 TW
3 kJ
Washington, D.C.
NRL
OMEGA laser
Operational
?-1995
1995-
60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons
60 TW
40 kJ
300 J
Rochester
LLE
Electra
Operational
Krypton fluoride laser , 5 Hz operation with 90,000+ shots continuous
4 GW
730 J
Washington D.C.
NRL
LULI2000
Operational
?
2003-
6-beam Nd:glass laser, λ= 1.06 μm , λ= 0.53 μm , λ= 0.26 μm
500 GW
600 J
Palaiseau
École polytechnique
OMEGA EP
Operational
2008-
60-beam UV
1.4 PW
5 kJ
Rochester
LLE
National Ignition Facility (NIF)
Operational
1997-2009
2010-
192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and 1.2× 1018 neutrons[ 103]
500 TW
2.05 MJ
3.15 MJ
Livermore
LLNL
Orion
Operational
2006-2010
2010-
10-beams, λ= 351 nm
200 TW
5 kJ
RAF Aldermaston
AWE
Laser Mégajoule (LMJ)
Operational
1999-2014
2014-
Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022[ 104]
800 TW
1 MJ
Bordeaux
CEA
[1]
Laser for Fast Ignition Experiments (LFEX)
Operational
2003-2015
2015-
High-contrast heating laser for FIREX, λ= 1053 nm
2 PW
10 kJ
100 μJ
Osaka
Institute for Laser Engineering
HiPER (High Power Laser Energy Research Facility)
Cancelled
2007-2015
-
Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy[ 105]
( 4 PW )
( 270 kJ )
( 25 MJ )
Laser Inertial Fusion Energy (LIFE)
Cancelled
2008-2013
-
Effort to develop a fusion power plant succeeding NIF
( 2.2 MJ )
( 40 MJ )
Livermore
LLNL
ISKRA-6
Planned
?
?
128 beam Nd:glass laser
300 TW ?
300 kJ ?
Sarov
RFNC-VNIIEF
Z-pinch
Inertial electrostatic confinement
Magnetized target fusion
References
^ "International tokamak research" . ITER . 13 November 2023.
^ a b c d e f g h i j k l Smirnov, V.P. (30 December 2009). "Tokamak foundation in USSR/Russia 1950–1990" . Nuclear Fusion . 50 (1): 014003. doi :10.1088/0029-5515/50/1/014003 . eISSN 1741-4326 . ISSN 0029-5515 . S2CID 17487157 .
^ "Pulsator" . www.ipp.mpg.de .
^ a b Taylor, R. J.; Lee, P.; Luhmann, N. C. Jr (1981). ICRF heating, particle transport and fluctuations in tokamaks (PDF) (Report). Archived from the original (PDF) on 2022-02-25.
^ Argenti, D.; Bonizzoni, G.; Cirant, S.; Corti, S.; Grosso, G.; Lampis, G.; Rossi, L.; Carretta, U.; Jacchia, A.; De Luca, F.; Fontanesi, M. (June 1981). "The Thor tokamak experiment". Il Nuovo Cimento B . 63 (2): 471– 486. Bibcode :1981NCimB..63..471A . doi :10.1007/BF02755093 . eISSN 1826-9877 . S2CID 123205206 .
^ Robert Arnoux (2009-05-18). "From Russia with love" .
^ "ASDEX" . www.ipp.mpg.de .
^ "Forschungszentrum Jülich – Plasmaphysik (IEK-4)" . fz-juelich.de (in German).
^ "Progress in Fusion Research – 30 Years of TEXTOR" (PDF) . Archived from the original (PDF) on 19 October 2016.
^ "Tokamak Fusion Test Reactor" . 2011-04-26. Archived from the original on 2011-04-26.
^ Robert Arnoux (2018-06-18). "The second-hand market" . ITER newsline .
^ "EFDA-JET, the world's largest nuclear fusion research experiment" . 2006-04-30. Archived from the original on 2006-04-30.
^ ":::. Instituto Nacional de Investigaciones Nucleares | Fusión nuclear " . 2009-11-25. Archived from the original on 2009-11-25.
^ "All-the-Worlds-Tokamaks" . tokamak.info .
^ Yoshikawa, M. (2006-10-02). "JT-60 Project" . Fusion Technology 1978 . 2 : 1079. Bibcode :1979fute.conf.1079Y . Archived from the original on 2006-10-02.
^ "diii-d:home [MFE: DIII-D and Theory]" . fusion.gat.com . Retrieved 2018-09-04 .
^ "DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)" . science.energy.gov . Retrieved 2018-09-04 .
^ "U of S" . 2011-07-06. Archived from the original on 2011-07-06.
^ "Tore Supra" . www-fusion-magnetique.cea.fr . Retrieved 2018-09-04 .
^ "Tokamak Department, Institute of Plasma Physics" . 2014-05-12. Archived from the original on 2014-05-12.
^ "COMPASS – General information" . 2013-10-25. Archived from the original on 2013-10-25.
^ "START experiment at Culham" . 2006-04-24. Archived from the original on 2006-04-24.
^ "MIT Plasma Science & Fusion Center: research>alcator>" . 2015-07-09. Archived from the original on 2015-07-09.
^ "Centro de Fusão Nuclear" . cfn.ist.utl.pt . Archived from the original on 2010-03-07. Retrieved 2012-02-13 .
^ "EPFL" . crppwww.epfl.ch .
^ "Pegasus Toroidal Experiment" . pegasus.ep.wisc.edu .
^ "NSTX-U" . nstx-u.pppl.gov . Retrieved 2018-09-04 .
^ "Globus-M experiment" . globus.rinno.ru/ (in Russian). Retrieved 2021-10-23 .
^ "MAST – the Spherical Tokamak at UKAEA Culham" . 2006-04-21. Archived from the original on 2006-04-21.
^ "The SST-1 Tokamak Page" . 2014-06-20. Archived from the original on 2014-06-20.
^ "EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences" . english.hf.cas.cn .
^ "Chinese "Artificial Sun" experimental fusion reactor sets world record for superheated plasma time" . The Nation . May 29, 2021.
^ Patrick Pester (2025-01-21). "China's 'artificial sun' shatters nuclear fusion record by generating steady loop of plasma for 1,000 seconds" . livescience.com . Retrieved 2025-02-04 .
^ "연구분야 > KSTAR > 운영사업 > KSTAR 소개" (in Kanuri). 2008-05-30. Archived from the original on 2011-09-29.
^ McFadden, Christopher (29 March 2024). "South Korean 'artificial sun' reaches 7 times the Sun's core temperature" . Interesting Engineering . Retrieved 30 March 2024 .
^ "Q-shuUniv. Exp. with Steady-State Spherical Tokamak" . 2013-11-10. Archived from the original on 2013-11-10.
^ "QUEST Project" . Advanced Fusion Research Center, Research Institute for Applied Mechanics, Kyushu University. Retrieved 24 February 2025 .
^ "ST25 » Tokamak Energy" . Archived from the original on 2019-03-26. Retrieved 2018-10-21 .
^ "ST40 » Tokamak Energy" . Archived from the original on 2019-03-26. Retrieved 2018-10-21 .
^ "Status and Plans on MAST-U" . 2016-12-13.
^ "China completes new tokamak" . 29 November 2019.
^ "The JT-60SA project" . www.jt60sa.org . Archived from the original on 2021-01-28. Retrieved 2021-03-06 .
^ "Ignited plasma in Tokamaks – The IGNITOR project" . frascati.enea.it . Archived from the original on 2020-04-19.
^ "Ignitor, il progetto del reattore nucleare italiano, è stato chiuso - Panorama" . www.panorama.it (in Italian). Retrieved 2024-06-28 .
^ "Fusion technology breakthrough: China unveils first commercial "artificial sun" (photo)" . NEWS.am TECH - Innovations and science . June 20, 2024. Retrieved 2024-06-22 .
^ Z.Y. Li; Z.C. Pan; Q.J. Zhang; K.P. Zhu; C. Zhang; Z.W. Zhang; G. Dong; Y.M. Ye; Z. Yang (2024-12-01). "Development and construction of magnet system for world's first full high temperature superconducting tokamak" . Superconductivity . 12 : 100137. doi :10.1016/j.supcon.2024.100137 .
^ Harris, Mark (October 4, 2023). "2023 Climate Tech Companies to Watch: Commonwealth and its compact tokamak" . MIT Technology Review . Retrieved February 10, 2024 .
^ "SPARC" . MIT Plasma Science and Fusion Center .
^ Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.; Brunner, D.; Canik, J.; Doody, J.; Fülöp, T. ; Garnier, D. T.; Granetz, R.; Gray, T. K.; Holland, C. (2020). "Overview of the SPARC tokamak" . Journal of Plasma Physics . 86 (5). Bibcode :2020JPlPh..86e8602C . doi :10.1017/S0022377820001257 . hdl :1721.1/136131 . ISSN 0022-3778 .
^ Chesto, Jon (2021-03-03). "MIT energy startup homes in on fusion, with plans for 47-acre site in Devens" . BostonGlobe.com . Retrieved 2021-03-03 .
^ Verma, Pranshu. Nuclear fusion power inches closer to reality. The Washington Post, August 26, 2022.
^ "ITER – the way to new energy" . ITER .
^ "The DTT Project" . Archived from the original on 2019-03-30. Retrieved 2020-02-21 .
^ "The new Divertor Tokamak Test facility" (PDF) . Archived from the original (PDF) on 2020-02-21. Retrieved 2020-02-21 .
^ Antonella (2024-06-12). "Divertor Tokamak Test facility Research Plan Version 1.0" . www.pubblicazioni.enea.it (in Italian). Retrieved 2024-06-28 .
^ Srinivasan, R. (2016). "Design and analysis of SST-2 fusion reactor". Fusion Engineering and Design . 112 : 240– 243. Bibcode :2016FusED.112..240S . doi :10.1016/j.fusengdes.2015.12.044 . ISSN 0920-3796 .
^ Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Wan, B.N.; Duan, X.R.; Fu, P.; Xiao, B.J. (5 June 2019). "Progress of the CFETR design". Nuclear Fusion . 59 (11): 112010. Bibcode :2019NucFu..59k2010Z . doi :10.1088/1741-4326/ab0e27 . eISSN 1741-4326 . ISSN 0029-5515 . S2CID 127585754 .
^ "Energy innovator reaches for the stars" . www.madeherenow.com .
^ "Tokamak Energy's fusion prototype to be built at UKAEA's campus" . gov.uk . 2023-02-10.
^ "Tokamak Energy's new advanced fusion prototype to be built at UKAEA's Culham Campus" . tokamakenergy.com . 2023-02-10.
^ "Tokamak to construct demo fusion reactor at Culham" . World Nuclear News . 2023-02-10.
^ STEP, UKAEA. "STEP Project Partner Slide Deck" . STEP UKAEA Portal . Retrieved 2023-04-04 .
^ Tobita, Kenji; Hiwatari, Ryoji; Sakamoto, Yoshiteru; Someya, Youji; Asakura, Nobuyuki; Utoh, Hiroyasu; Miyoshi, Yuya; Tokunaga, Shinsuke; Homma, Yuki; Kakudate, Satoshi; Nakajima, Noriyoshi; for Fusion DEMO, the Joint Special Design Team (2019-07-04). "Japan's Efforts to Develop the Concept of JA DEMO During the Past Decade" . Fusion Science and Technology . 75 (5): 372– 383. Bibcode :2019FuST...75..372T . doi :10.1080/15361055.2019.1600931 . ISSN 1536-1055 . S2CID 164357381 .
^ Iwai, Yasunori; Edao, Yuki; Kurata, Rie; Isobe, Kanetsugu (2021-05-01). "Basic concept of JA DEMO fuel cycle" . Fusion Engineering and Design . 166 : 112261. Bibcode :2021FusED.16612261I . doi :10.1016/j.fusengdes.2021.112261 . ISSN 0920-3796 . S2CID 233566366 .
^ Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C. (2015). "Design concept of K-DEMO for near-term implementation" . Nuclear Fusion . 55 (5): 053027. Bibcode :2015NucFu..55e3027K . doi :10.1088/0029-5515/55/5/053027 . ISSN 0029-5515 .
^ a b c d e Lees, D.J. (1 September 1985). "Culham stellarator programme, 1965–1980". Nuclear Fusion . 25 (9): 1259– 1265. doi :10.1088/0029-5515/25/9/044 . eISSN 1741-4326 . ISSN 0029-5515 . S2CID 119660036 .
^ Georgiyevskiy, A. V.; Solodovchenko, S. I.; Voitsenya, V. S. (13 February 2010). "Contributions of the "Saturn" to Modern Stellarator-Torsatron Research". Journal of Fusion Energy . 29 (4): 399– 406. Bibcode :2010JFuE...29..399G . doi :10.1007/s10894-010-9284-0 . eISSN 1572-9591 . ISSN 0164-0313 . S2CID 123305093 .
^ Georgievskii, A. V.; Suprunenko, V. A.; Sukhomlin, E. A. (May 1973). "Vint-20 single-helix torsatron machine with three-dimensional magnetic axis". Soviet Atomic Energy . 34 (5): 518– 519. doi :10.1007/BF01163768 . eISSN 1573-8205 . ISSN 0038-531X . S2CID 94405830 .
^ a b "History | ННЦ ХФТИ" . kipt.kharkov.ua .
^ "Uragan-3M | IPP NSC KIPT" . ipp.kipt.kharkov.ua .
^ "ORNL Review v17n3 1984.pdf | ORNL" . www.ornl.gov .
^ Department, Head of; prl@physics.anu.edu.au. "Plasma Research Laboratory – PRL – ANU" . prl.anu.edu.au . Archived from the original on 2010-02-13. Retrieved 2005-12-26 .
^ "TJ-K – FusionWiki" . fusionwiki.ciemat.es .
^ CIEMAT. "Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas" . ciemat.es (in Spanish).
^ "Large Helical Device Project" . lhd.nifs.ac.jp . Archived from the original on 2010-04-12. Retrieved 2006-04-20 .
^ "HSX – Helically Symmetric eXperiment" . hsx.wisc.edu .
^ "Heliotron J Project" . iae.kyoto-u.ac.jp/en/joint/heliotron-j.html . Archived from the original on 2018-10-24. Retrieved 2018-12-06 .
^ "Uragan-2M | IPP NSC KIPT" . ipp.kipt.kharkov.ua .
^ "QPS Home Page" . Archived from the original on 2016-04-24. Retrieved 2018-09-01 .
^ D.B. Batchelor; R.D. Benson; L.A. Berry; T.S. Bigelow; M.J. Cole; P.J. Fogarty; R.H. Fowler; P. Goranson; E.F. Jaeger; S.P. Hirshman; J.F. Lyon; P.K. Mioduszewski; B.E. Nelson; D.A. Rasmussen; D.A. Spong; D.J. Strickler; J.C. Whitson; D.E. Williamson; W.H. Miner, jr.; P.M. Valanju; A. Deisher; D. Heskett; A.S. Ware; A. Brooks; G.Y. Fu; S. Hudson; D.A. Monticello; N. Pomphrey; T. Shannon; R. Sanchez. "QPS A LOW-ASPECT-RATIO QUASI-POLOIDAL CONCEPT EXPLORATION EXPERIMENT" (PDF) . Archived from the original (PDF) on 19 October 2004.
^ "HIDRA – Hybrid Illinois Device for Research and Applications | CPMI – Illinois" . cpmi.illinois.edu .
^ "Vying Fusion Energy - V. Queral" . www.fusionvic.org .
^ "Wendelstein 7-X" . ipp.mpg.de/w7x .
^ T.M. Qian; X. Chu; C. Pagano; D. Patch; M.C. Zarnstorff; B. Berlinger; D. Bishop; A. Chambliss; M. Haque; D. Seidita; C. Zhu (2023-10-31). "Design and construction of the MUSE permanent magnet stellarator" . Journal of Plasma Physics . 89 (5): 955890502. Bibcode :2023JPlPh..89e9502Q . doi :10.1017/S0022377823000880 .
^ KINOSHITA, Shigeyoshi; SHIMIZU, Akihiro; OKAMURA, Shoichi; ISOBE, Mitsutaka; XIONG, Guozhen; LIU, Haifeng; XU, Yuhong; The CQFS Team (2019-06-03). "Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)" . Plasma and Fusion Research . 14 : 3405097. Bibcode :2019PFR....1405097K . doi :10.1585/pfr.14.3405097 . ISSN 1880-6821 .
^ "Introduction to the Gauss Fusion Initiative" (PDF) . 2022-12-08.
^ "CONSORZIO RFX – Ricerca Formazione Innovazione" . igi.cnr.it . Archived from the original on 2009-09-01. Retrieved 2018-04-16 .
^ Hartog, Peter Den. "MST – UW Plasma Physics" . plasma.physics.wisc.edu . Archived from the original on 2019-03-13. Retrieved 2013-02-28 .
^ Liu, Wandong; et, al. (2017). "Overview of Keda Torus eXperiment initial results". Nuclear Fusion . 57 (11): 116038. Bibcode :2017NucFu..57k6038L . doi :10.1088/1741-4326/aa7f21 . ISSN 0029-5515 . S2CID 116431906 .
^ "Report Oct 15, 2021" (PDF) . 2021-10-15. Archived (PDF) from the original on 2021-10-25.
^ "Levitated Dipole Experiment" . 2004-08-23. Archived from the original on 2004-08-23.
^ F Skoberne (July 1967). "Los Alamos Laser Fusion Program" (PDF) .
^ "Beam-propagation studies on Cyclops" (PDF) . February 1976.
^ a b Danson, Colin N.; et al. (2021). "A history of high-power laser research and development in the United Kingdom" . High Power Laser Science and Engineering . 9 . Bibcode :2021HPLSE...9E..18D . doi :10.1017/hpl.2021.5 . eISSN 2052-3289 . hdl :10044/1/89337 . ISSN 2095-4719 . S2CID 233401354 .
^ "CLF Get to know the CLF Lasers" .
^ a b "RFNC-VNIIEF – Science – Laser physics" . 2005-04-06. Archived from the original on 2005-04-06.
^ a b Hora, Heinrich; Miley, George H, eds. (1984). Laser Interaction and Related Plasma Phenomena . Springer US. doi :10.1007/978-1-4615-7332-6 . ISBN 978-1-4615-7334-0 .
^ Schwarzschild, Bertram M. (1984). "Fusion experiments have begun at Antares" . Physics Today . 37 (9): 19. Bibcode :1984PhT....37i..19S . doi :10.1063/1.2916397 .
^ Peng, Hansheng (1996). Inertial confinement fusion program at CAEP . Vol. 369. AIP. p. 61–70. doi :10.1063/1.50487 .
^ "Wayback Machine" (PDF) . apps.dtic.mil . 2025-02-02. Archived from the original (PDF) on 2025-03-18. Retrieved 2025-03-18 .
^ Lehecka, T.; Bodner, S.; Deniz, A. V.; Mostovych, A. N.; Obenschain, S. P.; Pawley, C. J.; Pronko, M. S. (December 1991). "The NIKE KrF laser fusion facility". Journal of Fusion Energy . 10 (4): 301– 303. Bibcode :1991JFuE...10..301L . doi :10.1007/BF01052128 . eISSN 1572-9591 . ISSN 0164-0313 . S2CID 122087249 .
^ Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max; et al. (19 August 2015). "High-energy krypton fluoride lasers for inertial fusion". Applied Optics . 54 (31): F103-22. Bibcode :2015ApOpt..54F.103O . doi :10.1364/AO.54.00F103 . eISSN 1539-4522 . ISSN 0003-6935 . PMID 26560597 .
^ CLERY, DANIEL (13 December 2022). "With historic explosion, a long sought fusion breakthrough" . www.science.org . Retrieved 2022-12-14 .
^ "CEA – Laser Mégajoule" . www-lmj.cea.fr .
^ "The HiPER Project" . Archived from the original on 2022-12-23.
^ "University of Nevada, Reno. Nevada Terawatt Facility" . archive.is . 2000-09-19. Archived from the original on 2000-09-19.
^ "Sandia National Laboratories: National Security Programs" . sandia.gov .
^ "PULSOTRON" . pulsotron.org . Archived from the original on 2019-04-01. Retrieved 2020-03-09 .
See also