List of uniform polyhedra by spherical triangle
Polyhedron
Class
Number and properties
Platonic solids
(5 , convex, regular)
Archimedean solids
(13 , convex, uniform)
Kepler–Poinsot polyhedra
(4 , regular, non-convex)
Uniform polyhedra
(75 , uniform)
Prismatoid :prisms , antiprisms etc.
(4 infinite uniform classes)
Polyhedra tilings
(11 regular , in the plane)
Quasi-regular polyhedra
(8 )
Johnson solids
(92 , convex, non-uniform)
Bipyramids
(infinite )
Pyramids
(infinite )
Stellations
Stellations
Polyhedral compounds
(5 regular )
Deltahedra
(Deltahedra , equilateral triangle faces)
Snub polyhedra
(12 uniform , not mirror image)
Zonohedron
(Zonohedra , faces have 180°symmetry)
Dual polyhedron
Self-dual polyhedron
(infinite )
Catalan solid
(13 , Archimedean dual)
There are many relations among the uniform polyhedra . This List of uniform polyhedra by spherical triangle groups them by the Wythoff symbol .
Key
Image
Name
Bowers pet name
V Number of vertices,E Number of edges,F Number of faces=Face configuration
? =Euler characteristic, group=Symmetry group
Wythoff symbol - Vertex figure
W - Wenninger number, U - Uniform number, K- Kalido number, C -Coxeter number
alternative name
second alternative name
The vertex figure can be discovered by considering the Wythoff symbol:
p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r)p .
p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
2|q r - 4 edges, alternating q-gons and r-gons
q r|p - 4 edges, 2p-gons, q-gons, 2p-gons r-gons, Vertex figure 2p.q.2p.r.
q 2|p - 3 edges, 2p-gons, q-gons, 2p-gons, Vertex figure 2p.q.2p.
p q r|- 3 edges, 2p-gons, 2q-gons, 2r-gons, vertex figure 2p.2q.2r
Convex
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
π
3
π
3
π
2
{\displaystyle {\pi \over 3}\ {\pi \over 3}\ {\pi \over 2}}
Tetrahedron
Tet
V 4,E 6,F 4=4{3}
χ =2, group=Td , A3 , [3,3], (*332)
3 | 2 3 | 2 2 2 - 3.3.3
W1, U01, K06, C15
Octahedron
Truncated tetrahedron
Tut
V 12,E 18,F 8=4{3}+4{6}
χ =2, group=Td , A3 , [3,3], (*332), order 24
2 3 | 3 - 3.6.6
W6, U02, K07, C16
Cuboctahedron
Truncated octahedron
Icosahedron
π
4
π
3
π
2
{\displaystyle {\pi \over 4}\ {\pi \over 3}\ {\pi \over 2}}
Octahedron
Oct
V 6,E 12,F 8=8{3}
χ =2, group=Oh , BC3 , [4,3], (*432)
4 | 2 3 - 3.3.3.3
W2, U05, K10, C17
Hexahedron
Cube
V 8,E 12,F 6=6{4}
χ =2, group=Oh , B3 , [4,3], (*432)
3 | 2 4 - 4.4.4
W3, U06, K11, C18
Cuboctahedron
Co
V 12,E 24,F 14=8{3}+6{4}
χ =2, group=Oh , B3 , [4,3], (*432), order 48Td , [3,3], (*332), order 24
2 | 3 4 3 3 | 2 - 3.4.3.4
W11, U07, K12, C19
Truncated cube
Tic
V 24,E 36,F 14=8{3}+6{8}
χ =2, group=Oh , B3 , [4,3], (*432), order 48
2 3 | 4 - 3.8.8
W8, U09, K14, C21
Truncated hexahedron
Truncated octahedron
Toe
V 24,E 36,F 14=6{4}+8{6}
χ =2, group=Oh , B3 , [4,3], (*432), order 48Th , [3,3] and (*332), order 24
2 4 | 3 3 3 2 | - 4.6.6
W7, U08, K13, C20
Rhombicuboctahedron
Sirco
V 24,E 48,F 26=8{3}+(6+12){4}
χ =2, group=Oh , B3 , [4,3], (*432), order 48
3 4 | 2 - 3.4.4.4
W13, U10, K15, C22
Rhombicuboctahedron
Truncated cuboctahedron
Girco
V 48,E 72,F 26=12{4}+8{6}+6{8}
χ =2, group=Oh , B3 , [4,3], (*432), order 48
2 3 4 | - 4.6.8
W15, U11, K16, C23
Rhombitruncated cuboctahedron
Truncated cuboctahedron
Snub cube
Snic
V 24,E 60,F 38=(8+24){3}+6{4}
χ =2, group=O , 1 / 2 B3 , [4,3]+ , (432), order 24
| 2 3 4 - 3.3.3.3.4
W17, U12, K17, C24
π
5
π
3
π
2
{\displaystyle {\pi \over 5}\ {\pi \over 3}\ {\pi \over 2}}
Icosahedron
Ike
V 12,E 30,F 20=20{3}
χ =2, group=Ih , H3 , [5,3], (*532)
5 | 2 3 - 3.3.3.3.3
W4, U22, K27, C25
Dodecahedron
Doe
V 20,E 30,F 12=12{5}
χ =2, group=Ih , H3 , [5,3], (*532)
3 | 2 5 - 5.5.5
W5, U23, K28, C26
Icosidodecahedron
Id
V 30,E 60,F 32=20{3}+12{5}
χ =2, group=Ih , H3 , [5,3], (*532), order 120
2 | 3 5 - 3.5.3.5
W12, U24, K29, C28
Truncated dodecahedron
Tid
V 60,E 90,F 32=20{3}+12{10}
χ =2, group=Ih , H3 , [5,3], (*532), order 120
2 3 | 5 - 3.10.10
W10, U26, K31, C29
Truncated icosahedron
Ti
V 60,E 90,F 32=12{5}+20{6}
χ =2, group=Ih , H3 , [5,3], (*532), order 120
2 5 | 3 - 5.6.6
W9, U25, K30, C27
Rhombicosidodecahedron
Srid
V 60,E 120,F 62=20{3}+30{4}+12{5}
χ =2, group=Ih , H3 , [5,3], (*532), order 120
3 5 | 2 - 3.4.5.4
W14, U27, K32, C30
Rhombicosidodecahedron
Truncated icosidodecahedron
Grid
V 120,E 180,F 62=30{4}+20{6}+12{10}
χ =2, group=Ih , H3 , [5,3], (*532), order 120
2 3 5 | - 4.6.10
W16, U28, K33, C31
Rhombitruncated icosidodecahedron
Truncated icosidodecahedron
Snub dodecahedron
Snid
V 60,E 150,F 92=(20+60){3}+12{5}
χ =2, group=I , 1 / 2 H3 , [5,3]+ , (532), order 60
| 2 3 5 - 3.3.3.3.5
W18, U29, K34, C32
Non-convex
a b 2
3 3 2
a
π
3
b
π
3
c
π
2
{\displaystyle {a\pi \over 3}\ {b\pi \over 3}\ {c\pi \over 2}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
π
3
π
2
2
π
3
{\displaystyle {\pi \over 3}\ {\pi \over 2}\ {2\pi \over 3}}
Tetrahemihexahedron
Thah
V 6,E 12,F 7=4{3}+3{4}
χ =1, group=Td , [3,3], *332
3/2 3 | 2 (double-covering) - 3.4.3/2.4
W67, U04, K09, C36
4 3 2
a
π
4
b
π
3
c
π
2
{\displaystyle {a\pi \over 4}\ {b\pi \over 3}\ {c\pi \over 2}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
π
4
2
π
3
π
2
{\displaystyle {\pi \over 4}\ {2\pi \over 3}\ {\pi \over 2}}
octahedron
cube
Stellated truncated hexahedron
Quith
V 24,E 36,F 14=8{3}+6{8/3}
χ =2, group=Oh , [4,3], *432
2 3 | 4/3 2 3/2 | 4/3 - 3.8/3.8/3
W92, U19, K24, C66
Quasitruncated hexahedron
stellatruncated cube
Nonconvex great rhombicuboctahedron
Querco
V 24,E 48,F 26=8{3}+(6+12){4}
χ =2, group=Oh , [4,3], *432
3/2 4 | 2 3 4/3 | 2 - 4.4.4.3/2
W85, U17, K22, C59
Quasirhombicuboctahedron
Small rhombihexahedron
Sroh
V 24,E 48,F 18=12{4}+6{8}
χ =−6, group=Oh , [4,3], *432
2 4 (3/2 4/2) | - 4.8.4/3.8/7
W86, U18, K23, C60
3
π
4
π
3
π
2
{\displaystyle {3\pi \over 4}\ {\pi \over 3}\ {\pi \over 2}}
Great truncated cuboctahedron
Quitco
V 48,E 72,F 26=12{4}+8{6}+6{8/3}
χ =2, group=Oh , [4,3], *432
2 3 4/3 | - 4.6/5.8/3
W93, U20, K25, C67
Quasitruncated cuboctahedron
3
π
4
2
π
3
π
2
{\displaystyle {3\pi \over 4}\ {2\pi \over 3}\ {\pi \over 2}}
Great rhombihexahedron
Groh
V 24,E 48,F 18=12{4}+6{8/3}
χ =−6, group=Oh , [4,3], *432
2 4/3 (3/2 4/2) | - 4.8/3.4/3.8/5
W103, U21, K26, C82
5 3 2
a
π
5
b
π
3
c
π
2
{\displaystyle {a\pi \over 5}\ {b\pi \over 3}\ {c\pi \over 2}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
2
π
5
π
3
π
2
{\displaystyle {2\pi \over 5}\ {\pi \over 3}\ {\pi \over 2}}
Great icosahedron
Gike
V 12,E 30,F 20=20{3}
χ =2, group=Ih , H3 , [5,3], (*532)
5 ⁄2 | 2 3 - (35 )/2
W41, U53, K58, C69
Great stellated dodecahedron
Gissid
V 20,E 30,F 12=12 { 5 ⁄2 }
χ =2, group=Ih , H3 , [5,3], (*532)
3 | 2 5 ⁄2 - (5 ⁄2 )3
W22, U52, K57, C68
Great icosidodecahedron
Gid
V 30,E 60,F 32=20{3}+12{5/2}
χ =2, group=Ih , [5,3], *532
2 | 3 5/2 2 | 3 5/3 2 | 3/2 5/2 2 | 3/2 5/3 - 3.5/2.3.5/2
W94, U54, K59, C70
Great stellated truncated dodecahedron
Quit Gissid
V 60,E 90,F 32=20{3}+12{10/3}
χ =2, group=Ih , [5,3], *532
2 3 | 5/3 - 3.10/3.10/3
W104, U66, K71, C83
Quasitruncated great stellated dodecahedron
Great stellatruncated dodecahedron
Truncated great icosahedron
Tiggy
V 60,E 90,F 32=12{5/2}+20{6}
χ =2, group=Ih , [5,3], *532
2 5/2 | 3 2 5/3 | 3 - 6.6.5/2
W95, U55, K60, C71
Nonconvex great rhombicosidodecahedron
Qrid
V 60,E 120,F 62=20{3}+30{4}+12{5/2}
χ =2, group=Ih , [5,3], *532
5/3 3 | 2 5/2 3/2 | 2 - 3.4.5/3.4
W105, U67, K72, C84
Quasirhombicosidodecahedron
p q r|
p q r|
p q r|
|p q r
3
π
5
π
3
π
2
{\displaystyle {3\pi \over 5}\ {\pi \over 3}\ {\pi \over 2}}
Rhombicosahedron
Ri
V 60,E 120,F 50=30{4}+20{6}
χ =−10, group=Ih , [5,3], *532
2 3 (5/4 5/2) | - 4.6.4/3.6/5
W96, U56, K61, C72
Great truncated icosidodecahedron
Gaquatid
V 120,E 180,F 62=30{4}+20{6}+12{10/3}
χ =2, group=Ih , [5,3], *532
2 3 5/3 | - 4.6.10/3
W108, U68, K73, C87
Great quasitruncated icosidodecahedron
Great rhombidodecahedron
Gird
V 60,E 120,F 42=30{4}+12{10/3}
χ =−18, group=Ih , [5,3], *532
2 5/3 (3/2 5/4) | - 4.10/3.4/3.10/7
W109, U73, K78, C89
5 5 2
a
π
5
b
π
5
c
π
2
{\displaystyle {a\pi \over 5}\ {b\pi \over 5}\ {c\pi \over 2}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
π
5
2
π
5
π
2
{\displaystyle {\pi \over 5}\ {2\pi \over 5}\ {\pi \over 2}}
Small stellated dodecahedron
Sissid
V 12,E 30,F 12=12 5
χ =-6, group=Ih , H3 , [5,3], (*532)
5 | 2 5 ⁄2 - (5 ⁄2 )5
W20, U34, K39, C43
Great dodecahedron
Gad
V 12,E 30,F 12=12{5}
χ =-6, group=Ih , H3 , [5,3], (*532)
5 ⁄2 | 2 5 - (55 )/2
W21, U35, K40, C44
Dodecadodecahedron
Did
V 30,E 60,F 24=12{5}+12{5/2}
χ =−6, group=Ih , [5,3], *532
2 | 5 5/2 2 | 5 5/3 2 | 5/2 5/4 2 | 5/3 5/4 - 5.5/2.5.5/2
W73, U36, K41, C45
Small stellated truncated dodecahedron
Quit Sissid
V 60,E 90,F 24=12{5}+12{10/3}
χ =−6, group=Ih , [5,3], *532
2 5 | 5/3 2 5/4 | 5/3 - 5.10/3.10/3
W97, U58, K63, C74
Quasitruncated small stellated dodecahedron
Small stellatruncated dodecahedron
Truncated great dodecahedron
Tigid
V 60,E 90,F 24=12{5/2}+12{10}
χ =−6, group=Ih , [5,3], *532
2 5/2 | 5 2 5/3 | 5 - 10.10.5/2
W75, U37, K42, C47
Rhombidodecadodecahedron
Raded
V 60,E 120,F 54=30{4}+12{5}+12{5/2}
χ =−6, group=Ih , [5,3], *532
5/2 5 | 2 - 4.5/2.4.5
W76, U38, K43, C48
p q r|
p q r|
|p q r
π
5
3
π
5
π
2
{\displaystyle {\pi \over 5}\ {3\pi \over 5}\ {\pi \over 2}}
Small rhombidodecahedron
Sird
V 60,E 120,F 42=30{4}+12{10}
χ =−18, group=Ih , [5,3], *532
2 5 (3/2 5/2) | - 4.10.4/3.10/9
W74, U39, K44, C46
Truncated dodecadodecahedron
Quitdid
V 120,E 180,F 54=30{4}+12{10}+12{10/3}
χ =−6, group=Ih , [5,3], *532
2 5 5/3 | - 4.10/9.10/3
W98, U59, K64, C75
Quasitruncated dodecadodecahedron
a b 3
3 3 3
a
π
3
b
π
3
c
π
3
{\displaystyle {a\pi \over 3}\ {b\pi \over 3}\ {c\pi \over 3}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
π
3
π
3
2
π
3
{\displaystyle {\pi \over 3}\ {\pi \over 3}\ {2\pi \over 3}}
Octahemioctahedron
Oho
V 12,E 24,F 12=8{3}+4{6}
χ =0, group=Oh , [4,3], *432
3/2 3 | 3 - 3.6.3/2.6
W68, U03, K08, C37
4 3 3
a
π
4
b
π
3
c
π
3
{\displaystyle {a\pi \over 4}\ {b\pi \over 3}\ {c\pi \over 3}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
5 3 3
a
π
5
b
π
3
c
π
3
{\displaystyle {a\pi \over 5}\ {b\pi \over 3}\ {c\pi \over 3}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
3
π
5
π
3
π
3
{\displaystyle {3\pi \over 5}\ {\pi \over 3}\ {\pi \over 3}}
Great ditrigonal icosidodecahedron
Gidtid
V 20,E 60,F 32=20{3}+12{5}
χ =−8, group=Ih , [5,3], *532
3/2 | 3 5 3 | 3/2 5 3 | 3 5/4 3/2 | 3/2 5/4 - ((3.5)3 )/2
W87, U47, K52, C61
Small ditrigonal icosidodecahedron
Sidtid
V 20,E 60,F 32=20{3}+12{5/2}
χ =−8, group=Ih , [5,3], *532
3 | 5/2 3 - (3.5/2)3
W70, U30, K35, C39
Great icosihemidodecahedron
Geihid
V 30,E 60,F 26=20{3}+6{10/3}
χ =−4, group=Ih , [5,3], *532
3/2 3 | 5/3 - 3.10/3.3/2.10/3
W106, U71, K76, C85
Small icosihemidodecahedron
Seihid
V 30,E 60,F 26=20{3}+6{10}
χ =−4, group=Ih , [5,3], *532
3/2 3 | 5 (double covering) - 3.10.3/2.10
W89, U49, K54, C63
Great icosicosidodecahedron
Giid
V 60,E 120,F 52=20{3}+12{5}+20{6}
χ =−8, group=Ih , [5,3], *532
3/2 5 | 3 3 5/4 | 3 - 5.6.3/2.6
W88, U48, K53, C62
p q r|
p q r|
|p q r
π
5
2
π
3
π
3
{\displaystyle {\pi \over 5}\ {2\pi \over 3}\ {\pi \over 3}}
Small icosicosidodecahedron
Siid
V 60,E 120,F 52=20{3}+12{5/2}+20{6}
χ =−8, group=Ih , [5,3], *532
5/2 3 | 3 - 6.5/2.6.3
W71, U31, K36, C40
Small dodecicosahedron
Siddy
V 60,E 120,F 32=20{6}+12{10}
χ =−28, group=Ih , [5,3], *532
3 5 (3/2 5/4) | - 6.10.6/5.10/9
W90, U50, K55, C64
4 4 3
a
π
4
b
π
4
c
π
3
{\displaystyle {a\pi \over 4}\ {b\pi \over 4}\ {c\pi \over 3}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
π
4
π
3
3
π
4
{\displaystyle {\pi \over 4}\ {\pi \over 3}\ {3\pi \over 4}}
Cubohemioctahedron
Cho
V 12,E 24,F 10=6{4}+4{6}
χ =−2, group=Oh , [4,3], *432
4/3 4 | 3 (double-covering) - 4.6.4/3.6
W78, U15, K20, C51
Great cubicuboctahedron
Gocco
V 24,E 48,F 20=8{3}+6{4}+6{8/3}
χ =−4, group=Oh , [4,3], *432
3 4 | 4/3 4 3/2 | 4 - 3.8/3.4.8/3
W77, U14, K19, C50
Cubitruncated cuboctahedron
Cotco
V 48,E 72,F 20=8{6}+6{8}+6{8/3}
χ =−4, group=Oh , [4,3], *432
3 4 4/3 | - 6.8.8/3
W79, U16, K21, C52
Cuboctatruncated cuboctahedron
π
4
π
4
2
π
3
{\displaystyle {\pi \over 4}\ {\pi \over 4}\ {2\pi \over 3}}
Small cubicuboctahedron
Socco
V 24,E 48,F 20=8{3}+6{4}+6{8}
χ =−4, group=Oh , [4,3], *432
3/2 4 | 4 3 4/3 | 4 - 4.8.3/2.8
W69, U13, K18, C38
5 5 3
a
π
5
b
π
5
c
π
3
{\displaystyle {a\pi \over 5}\ {b\pi \over 5}\ {c\pi \over 3}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
π
3
2
π
5
3
π
5
{\displaystyle {\pi \over 3}\ {2\pi \over 5}\ {3\pi \over 5}}
Small dodecahemicosahedron
Sidhei
V 30,E 60,F 22=12{5/2}+10{6}
χ =−8, group=Ih , [5,3], *532
5/3 5/2 | 3 (double covering) - 6.5/2.6.5/3
W100, U62, K67, C78
Great dodecicosahedron
Giddy
V 60,E 120,F 32=20{6}+12{10/3}
χ =−28, group=Ih , [5,3], *532
3 5/3 (3/2 5/2) | - 6.10/3.6/5.10/7
W101, U63, K68, C79
Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ =−16, group=Ih , [5,3], *532
3/2 5 | 5 3 5/4 | 5 - 5.10.3/2.10
W72, U33, K38, C42
π
3
π
5
4
π
5
{\displaystyle {\pi \over 3}\ {\pi \over 5}\ {4\pi \over 5}}
Great dodecahemicosahedron
Gidhei
V 30,E 60,F 22=12{5}+10{6}
χ =−8, group=Ih , [5,3], *532
5/4 5 | 3 (double covering) - 5.6.5/4.6
W102, U65, K70, C81
Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ =−16, group=Ih , [5,3], *532
5/3 3 | 5 5/2 3/2 | 5 - 3.10.5/3.10
W82, U43, K48, C55
Great ditrigonal dodecicosidodecahedron
Gidditdid
V 60,E 120,F 44=20{3}+12{5}+12{10/3}
χ =−16, group=Ih , [5,3], *532
3 5 | 5/3 5/4 3/2 | 5/3 - 3.10/3.5.10/3
W81, U42, K47, C54
π
5
π
5
2
π
3
{\displaystyle {\pi \over 5}\ {\pi \over 5}\ {2\pi \over 3}}
Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ =−16, group=Ih , [5,3], *532
3/2 5 | 5 3 5/4 | 5 - 5.10.3/2.10
W72, U33, K38, C42
Great dodecicosidodecahedron
Gaddid
V 60,E 120,F 44=20{3}+12{5/2}+12{10/3}
χ =−16, group=Ih , [5,3], *532
5/2 3 | 5/3 5/3 3/2 | 5/3 - 3.10/3.5/2.10/7
W99, U61, K66, C77
π
5
π
3
3
π
5
{\displaystyle {\pi \over 5}\ {\pi \over 3}\ {3\pi \over 5}}
Ditrigonal dodecadodecahedron
Ditdid
V 20,E 60,F 24=12{5}+12{5/2}
χ =−16, group=Ih , [5,3], *532
3 | 5/3 5 3/2 | 5 5/2 3/2 | 5/3 5/4 3 | 5/2 5/4 - (5.5/3)3
W80, U41, K46, C53
Icosidodecadodecahedron
Ided
V 60,E 120,F 44=12{5}+12{5/2}+20{6}
χ =−16, group=Ih , [5,3], *532
5/3 5 | 3 5/2 5/4 | 3 - 5.6.5/3.6
W83, U44, K49, C56
Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ =−16, group=Ih , [5,3], *532
5/3 3 | 5 5/2 3/2 | 5 - 3.10.5/3.10
W82, U43, K48, C55
Icositruncated dodecadodecahedron
Idtid
V 120,E 180,F 44=20{6}+12{10}+12{10/3}
χ =−16, group=Ih , [5,3], *532
3 5 5/3 | - 6.10.10/3
W84, U45, K50, C57
Icosidodecatruncated icosidodecahedron
a b 5
5 5 5
a
π
5
b
π
5
c
π
5
{\displaystyle {a\pi \over 5}\ {b\pi \over 5}\ {c\pi \over 5}}
Group
Spherical triangle
π
p
π
q
π
r
{\displaystyle {\pi \over p}\ {\pi \over q}\ {\pi \over r}}
p|q r
q|p r
r|p q
q r|p
p r|q
p q|r
p q r|
|p q r
2
π
5
3
π
5
3
π
5
{\displaystyle {2\pi \over 5}\ {3\pi \over 5}\ {3\pi \over 5}}
Great dodecahemidodecahedron
Gidhid
V 30,E 60,F 18=12{5/2}+6{10/3}
χ =−12, group=Ih , [5,3], *532
5/3 5/2 | 5/3 (double covering) - 5/2.10/3.5/3.10/3
W107, U70, K75, C86