The conjecture is true for the two-dimensional case. However, counterexamples have been constructed in higher dimensions. Hence, in the two-dimensional case only, it can also be referred to as the Markus–Yamabe theorem.
Related mathematical results concerning global asymptotic stability, which are applicable in dimensions higher than two, include various autonomous convergence theorems. Analog of the conjecture for nonlinear control system with scalar nonlinearity is known as Kalman's conjecture.
Mathematical statement of conjecture
Let be a map with and Jacobian which is Hurwitz stable for every .
Then is a global attractor of the dynamical system .
The conjecture is true for and false in general for .
Bernat, Josep; Llibre, Jaume (1996). "Counterexample to Kalman and Markus–Yamabe Conjectures in dimension larger than 3". Dynamics of Continuous, Discrete & Impulsive Systems. 2 (3): 337–379.
Bragin, V. O.; Vagaitsev, V.I.; Kuznetsov, N. V.; Leonov, G.A. (2011). "Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits". Journal of Computer and Systems Sciences International. 50 (5): 511–543. doi:10.1134/S106423071104006X. S2CID21657305.