Software for electromagnetic simulations
Meep (M IT E lectromagnetic E quation P ropagation) is a free and open-source [ 1] software package for electromagnetic simulations , developed by ab initio research group at Massachusetts Institute of Technology in 2006. Operating under Unix-like systems, it uses finite-difference time-domain method with perfectly matched layer or periodic boundary conditions for field computation.[ 2]
Meep supports dispersive , nonlinear and anisotropic media, and features subpixel smoothing and parallelization , as well as an embedded frequency-domain solver for steady-state fields and eigenmode expansion .[ 2] The package was subsequently expanded to include an adjoint solver for topology optimization and inverse design,[ 3] and a Python interface.[ 4]
The software is widely adopted by optics and photonics communities,[ 5] with applications including the analysis and design of metalenses [ 6] [ 7] and photonic crystals .[ 8] [ 9]
See also
References
^ "Meep: License and Copyright" . meep.readthedocs.io . Retrieved May 1, 2024 .
^ a b Oskooi, Ardavan F.; Roundy, David; Ibanescu, Mihai; Bermel, Peter; Joannopoulos, J.D. ; Johnson, Steven G. (March 2010). "Meep: A flexible free-software package for electromagnetic simulations by the FDTD method". Computer Physics Communications . 181 (3): 687โ 702. doi :10.1016/j.cpc.2009.11.008 . hdl :1721.1/60946 .
^ Hammond, Alec M.; Oskooi, Ardavan; Chen, Mo; Lin, Zin; Johnson, Steven G. ; Ralph, Stephen E. (2022). "High-performance hybrid time/frequency-domain topology optimization for large-scale photonics inverse design" . Optics Express . 30 (3): 4467โ 4491. doi :10.1364/OE.442074 .
^ "Meep: FAQ" . meep.readthedocs.io . Retrieved May 1, 2024 .
^ McCoy, Dakota E.; Shneidman, Anna V.; Davis, Alexander L.; Aizenberg, Joanna (December 2021). "Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering" . Micron . 151 : 103160. doi :10.1016/j.micron.2021.103160 .
^ Arbabi, Amir; Horie, Yu; Ball, Alexander J.; Bagheri, Mahmood; Faraon, Andrei (2015). "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays". Nature Communications . 6 : 7069. arXiv :1410.8261 . doi :10.1038/ncomms8069 . PMID 25947118 .
^ Zhou, You; Zheng, Hanyu; Kravchenko, Ivan I.; Valentine, Jason (2020). "Flat optics for image differentiation". Nature Photonics . 14 (5): 316โ 323. doi :10.1038/s41566-020-0591-3 . OSTI 1619041 .
^ Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J. (August 2015). "Superradiance for Atoms Trapped along a Photonic Crystal Waveguide". Physical Review Letters . 115 (6): 063601. arXiv :1503.04503 . doi :10.1103/PhysRevLett.115.063601 . PMID 26296116 .
^ Wu, Long-Hua; Hu, Xiao (June 2015). "Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material". Physical Review Letters . 114 (22): 223901. arXiv :1503.00416 . doi :10.1103/PhysRevLett.114.223901 . PMID 26196622 .
External links