Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and/or time scales.[1][2] This is usually achieved by immersing in a moving fluid a body with a multiscale, often fractal-like, arrangement of length scales. This arrangement of scales can be either passive[3][4] or active[5]
As turbulent flows contain eddies with a wide range of scales, exciting the turbulence at particular scales (or range of scales) allows one to fine-tune the properties of that flow. Multiscale turbulent flows have been successfully applied in different fields.,[6] such as:
Multiscale turbulence has also played an important role into probing the internal structure of turbulence.[15] This sort of turbulence allowed researchers to unveil a novel dissipationlaw in which the parameter in
is not constant, as required by the Richardson-Kolmogorovenergy cascade. This new law[15] can be expressed as , with , where and are Reynolds numbers based, respectively, on initial/global conditions (such as free-stream velocity and the object's length scale) and local conditions (such as the rms velocity and integral length scale). This new dissipation law characterises non-equilibrium turbulence apparently universally in various flows (not just multiscale turbulence) and results from non-equilibrium unsteady energy cascade. This imbalance implies that new mean flow scalings exist for free shear turbulent flows, as already observed in axisymmetric wakes[15][16]
References
^Laizet, S.; Vassilicos, J. C. (January 2009). "Multiscale Generation of Turbulence". Journal of Multiscale Modelling. 01 (1): 177–196. doi:10.1142/S1756973709000098.
^Hurst, D.; Vassilicos, J. C. (2007). "Scalings and decay of fractal-generated turbulence". Physics of Fluids. 19 (3): 035103–035103–31. Bibcode:2007PhFl...19c5103H. doi:10.1063/1.2676448.
^Nagata, K.; Sakai, Y.; Inaba, T.; Suzuki, H.; Terashima, O.; Suzuki, H. (2013). "Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence". Physics of Fluids. 25 (6): 065102–065102–26. Bibcode:2013PhFl...25f5102N. doi:10.1063/1.4811402.
^Thormann, A.; Meneveau, C. (February 2014). "Decay of homogeneous, nearly isotropic turbulence behind active fractal grids". Physics of Fluids. 26 (2): 025112. Bibcode:2014PhFl...26b5112T. doi:10.1063/1.4865232.
^Nedić, J.; Ganapathisubramani, B.; Vassilicos, J. C. (1 December 2013). "Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries". Fluid Dynamics Research. 45 (6): 061406. Bibcode:2013FlDyR..45f1406N. doi:10.1088/0169-5983/45/6/061406. S2CID119569184.