In probability theory, a nearly completely decomposable (NCD) Markov chain is a Markov chain where the state space can be partitioned in such a way that movement within a partition occurs much more frequently than movement between partitions.[1] Particularly efficient algorithms exist to compute the stationary distribution of Markov chains with this property.[2]
Definition
Ando and Fisher define a completely decomposable matrix as one where "an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and zeros everywhere else." A nearly completely decomposable matrix is one where an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and small nonzeros everywhere else.[3][4]
is nearly completely decomposable if ε is small (say 0.1).[5]
Stationary distribution algorithms
Special-purpose iterative algorithms have been designed for NCD Markov chains[2] though the multi–level algorithm, a general purpose algorithm,[6] has been shown experimentally to be competitive and in some cases significantly faster.[7]
^Kontovasilis, K. P.; Mitrou, N. M. (1995). "Markov-Modulated Traffic with Nearly Complete Decomposability Characteristics and Associated Fluid Queueing Models". Advances in Applied Probability. 27 (4): 1144–1185. doi:10.2307/1427937. JSTOR1427937. S2CID123810850.
^Leutenegger, Scott T.; Horton, Graham (June 1994). On the Utility of the Multi-Level Algorithm for the Solution of Nearly Completely Decomposable Markov Chains (ICASE Report No. 94-44)(PDF) (Technical report). NASA. Contractor Report 194929. Archived from the original on April 8, 2013. We present experimental results indicating that the general- purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks. Markov chains, Multi- level, Numerical solution.