Nonlinear generalizations of Maxwell electrodynamics
In high-energy physics , nonlinear electrodynamics (NED or NLED ) refers to a family of generalizations of Maxwell electrodynamics which describe electromagnetic fields that exhibit nonlinear dynamics .[ 1] For a theory to describe the electromagnetic field (a U(1) gauge field ), its action must be gauge invariant ; in the case of
U
(
1
)
{\displaystyle U(1)}
, for the theory to not have Faddeev-Popov ghosts , this constraint dictates that the Lagrangian of a nonlinear electrodynamics must be a function of only
s
≡
−
1
4
F
α
β
F
α
β
{\displaystyle s\equiv -{\frac {1}{4}}F_{\alpha \beta }F^{\alpha \beta }}
(the Maxwell Lagrangian ) and
p
≡
−
1
8
ϵ
α
β
γ
δ
F
α
β
F
γ
δ
{\displaystyle p\equiv -{\frac {1}{8}}\epsilon ^{\alpha \beta \gamma \delta }F_{\alpha \beta }F_{\gamma \delta }}
(where
ϵ
{\displaystyle \epsilon }
is the Levi-Civita tensor ).[ 1] [ 2] [ 3] Notable NED models include the Born-Infeld model ,[ 4] the Euler-Heisenberg Lagrangian ,[ 5] and the CP-violating
U
(
1
)
{\displaystyle U(1)}
Chern-Simons theory
L
=
s
+
θ
p
{\displaystyle {\mathcal {L}}=s+\theta p}
.[ 2] [ 6] [ 7]
Some recent formulations also consider nonlocal extensions involving fractional U(1) holonomies on twistor space , though these remain speculative.
References
^ a b Sorokin, Dmitri P. (2022). "Introductory Notes on Non-linear Electrodynamics and its Applications". Fortschritte der Physik . 70 (7– 8). arXiv :2112.12118 . doi :10.1002/prop.202200092 .
^ a b Bi, Shihao; Tao, Jun (2021). "Holographic DC conductivity for backreacted NLED in massive gravity". Journal of High Energy Physics (6): 174. arXiv :2101.00912 . Bibcode :2021JHEP...06..174B . doi :10.1007/JHEP06(2021)174 .
^ Bruce, Stanley A. (2024). "Nonlinear electrodynamics and its possible connection to relativistic superconductivity: An example". Zeitschrift für Naturforschung A . 79 (11): 1041– 1046. Bibcode :2024ZNatA..79.1041B . doi :10.1515/zna-2024-0136 .
^ Born, M.; Infeld, L. (1934). "Foundations of the New Field Theory" . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences . 144 (852): 425– 451. Bibcode :1934RSPSA.144..425B . doi :10.1098/rspa.1934.0059 .
^ Heisenberg, W.; Euler, H. (1936). "Folgerungen aus der Diracschen Theorie des Positrons". Zeitschrift für Physik (in German). 98 (11– 12): 714– 732. Bibcode :1936ZPhy...98..714H . doi :10.1007/bf01343663 . ISSN 1434-6001 .
^ Fu, Qi-Ming; Zhao, Li; Liu, Yu-Xiao (2021). "Weak deflection angle by electrically and magnetically charged black holes from nonlinear electrodynamics". Physical Review D . 104 (2): 024033. arXiv :2101.08409 . Bibcode :2021PhRvD.104b4033F . doi :10.1103/PhysRevD.104.024033 .
^ Delphenich, David (2003). "Nonlinear Electrodynamics and QED". arXiv :hep-th/0309108 .