Order-4-3 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell is an order-4 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. GeometryThe Schläfli symbol of the order-4-3 pentagonal honeycomb is {5,4,3}, with three order-4 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a cube, {4,3}.
Related polytopes and honeycombsIt is a part of a series of regular polytopes and honeycombs with {p,4,3} Schläfli symbol, and tetrahedral vertex figures: Order-4-3 hexagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-3 hexagonal honeycomb or 6,4,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the order-4-3 hexagonal honeycomb is {6,4,3}, with three order-4 hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is a cube, {4,3}.
Order-4-3 heptagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-3 heptagonal honeycomb or 7,4,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the order-4-3 heptagonal honeycomb is {7,4,3}, with three order-4 heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is a cube, {4,3}.
Order-4-3 octagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-3 octagonal honeycomb or 8,4,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the order-4-3 octagonal honeycomb is {8,4,3}, with three order-4 octagonal tilings meeting at each edge. The vertex figure of this honeycomb is a cube, {4,3}.
Order-4-3 apeirogonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-3 apeirogonal honeycomb or ∞,4,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,4,3}, with three apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is a cube, {4,3}. The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.
See alsoReferences
External links
|
Portal di Ensiklopedia Dunia