Order-4-4 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. GeometryThe Schläfli symbol of the order-4-4 pentagonal honeycomb is {5,4,4}, with four order-4 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.
Related polytopes and honeycombsIt is a part of a series of regular polytopes and honeycombs with {p,4,4} Schläfli symbol, and square tiling vertex figures:
Order-4-4 hexagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-4 hexagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the octagonal tiling honeycomb is {6,4,4}, with three octagonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.
Order-4-4 apeirogonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-4 apeirogonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,4,4}, with three order-4 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.
See alsoReferences
External links
|
Portal di Ensiklopedia Dunia