Order-8-3 triangular honeycomb
In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb (or 3,8,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,3}. GeometryIt has three order-8 triangular tiling {3,8} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an octagonal tiling vertex figure.
Related polytopes and honeycombsIt is a part of a sequence of regular honeycombs with order-8 triangular tiling cells: {3,8,p}. It is a part of a sequence of regular honeycombs with octagonal tiling vertex figures: {p,8,3}. It is a part of a sequence of self-dual regular honeycombs: {p,8,p}. Order-8-4 triangular honeycomb
In the geometry of hyperbolic 3-space, the order-8-4 triangular honeycomb (or 3,8,4 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,4}. It has four order-8 triangular tilings, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an order-4 hexagonal tiling vertex arrangement.
It has a second construction as a uniform honeycomb, Schläfli symbol {3,81,1}, Coxeter diagram, Order-8-5 triangular honeycomb
In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb (or 3,8,5 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,5}. It has five order-8 triangular tiling, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an order-5 octagonal tiling vertex figure.
Order-8-6 triangular honeycomb
In the geometry of hyperbolic 3-space, the order-8-6 triangular honeycomb (or 3,8,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,6}. It has infinitely many order-8 triangular tiling, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an order-6 octagonal tiling, {8,6}, vertex figure.
Order-8-infinite triangular honeycomb
In the geometry of hyperbolic 3-space, the order-8-infinite triangular honeycomb (or 3,8,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,∞}. It has infinitely many order-8 triangular tiling, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an infinite-order octagonal tiling, {8,∞}, vertex figure.
It has a second construction as a uniform honeycomb, Schläfli symbol {3,(8,∞,8)}, Coxeter diagram, Order-8-3 square honeycomb
In the geometry of hyperbolic 3-space, the order-8-3 square honeycomb (or 4,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the order-8-3 square honeycomb is {4,8,3}, with three order-4 octagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.
Order-8-3 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-8-3 pentagonal honeycomb (or 5,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-8 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the order-6-3 pentagonal honeycomb is {5,8,3}, with three order-8 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.
Order-8-3 hexagonal honeycomb
In the geometry of hyperbolic 3-space, the order-8-3 hexagonal honeycomb (or 6,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the order-8-3 hexagonal honeycomb is {6,8,3}, with three order-5 hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.
Order-8-3 apeirogonal honeycomb
In the geometry of hyperbolic 3-space, the order-8-3 apeirogonal honeycomb (or ∞,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-8 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,8,3}, with three order-8 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}. The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.
Order-8-4 square honeycomb
In the geometry of hyperbolic 3-space, the order-8-4 square honeycomb (or 4,8,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,8,4}. All vertices are ultra-ideal (existing beyond the ideal boundary) with four order-5 square tilings existing around each edge and with an order-4 octagonal tiling vertex figure.
Order-8-5 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-8-5 pentagonal honeycomb (or 5,8,5 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,8,5}. All vertices are ultra-ideal (existing beyond the ideal boundary) with five order-8 pentagonal tilings existing around each edge and with an order-5 pentagonal tiling vertex figure.
Order-8-6 hexagonal honeycomb
In the geometry of hyperbolic 3-space, the order-8-6 hexagonal honeycomb (or 6,8,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,8,6}. It has six order-8 hexagonal tilings, {6,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-6 octagonal tiling vertex arrangement.
It has a second construction as a uniform honeycomb, Schläfli symbol {6,(8,3,8)}, Coxeter diagram, Order-8-infinite apeirogonal honeycomb
In the geometry of hyperbolic 3-space, the order-8-infinite apeirogonal honeycomb (or ∞,8,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,8,∞}. It has infinitely many order-8 apeirogonal tiling {∞,8} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 apeirogonal tilings existing around each vertex in an infinite-order octagonal tiling vertex figure.
It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(8,∞,8)}, Coxeter diagram, See alsoReferences
External links
|
Portal di Ensiklopedia Dunia