P-adic exponential functionIn mathematics, particularly p-adic analysis, the p-adic exponential function is a p-adic analogue of the usual exponential function on the complex numbers. As in the complex case, it has an inverse function, named the p-adic logarithm. DefinitionThe usual exponential function on C is defined by the infinite series Entirely analogously, one defines the exponential function on Cp, the completion of the algebraic closure of Qp, by However, unlike exp which converges on all of C, expp only converges on the disc This is because p-adic series converge if and only if the summands tend to zero, and since the n! in the denominator of each summand tends to make them large p-adically, a small value of z is needed in the numerator. It follows from Legendre's formula that if then tends to , p-adically. Although the p-adic exponential is sometimes denoted ex, the number e itself has no p-adic analogue. This is because the power series expp(x) does not converge at x = 1. It is possible to choose a number e to be a p-th root of expp(p) for p ≠ 2,[a] but there are multiple such roots and there is no canonical choice among them.[1] p-adic logarithm functionThe power series converges for x in Cp satisfying |x|p < 1 and so defines the p-adic logarithm function logp(z) for |z − 1|p < 1 satisfying the usual property logp(zw) = logpz + logpw. The function logp can be extended to all of C × PropertiesIf z and w are both in the radius of convergence for expp, then their sum is too and we have the usual addition formula: expp(z + w) = expp(z)expp(w). Similarly if z and w are nonzero elements of Cp then logp(zw) = logpz + logpw. For z in the domain of expp, we have expp(logp(1+z)) = 1+z and logp(expp(z)) = z. The roots of the Iwasawa logarithm logp(z) are exactly the elements of Cp of the form pr·ζ where r is a rational number and ζ is a root of unity.[4] Note that there is no analogue in Cp of Euler's identity, e2πi = 1. This is a corollary of Strassmann's theorem. Another major difference to the situation in C is that the domain of convergence of expp is much smaller than that of logp. A modified exponential function — the Artin–Hasse exponential — can be used instead which converges on |z|p < 1. NotesReferences
External links |
Portal di Ensiklopedia Dunia