In mathematics, a perfect lattice (or perfect form) is a lattice in a Euclidean vector space, that is completely determined by the set S of its minimal vectors in the sense that there is only one positive definite quadratic form taking value 1 at all points of S. Perfect lattices were introduced by Korkine & Zolotareff (1877). A strongly perfect lattice is one whose minimal vectors form a spherical 4-design. This notion was introduced by Venkov (2001).
Voronoi (1908) proved that a lattice is extreme if and only if it is both perfect and eutactic.
The number of perfect lattices in dimensions 1, 2, 3, 4, 5, 6, 7, 8 is given by
1, 1, 1, 2, 3, 7, 33, 10916 (sequence A004026 in the OEIS). Conway & Sloane (1988) summarize the properties of perfect lattices of dimension up to 7.
Sikirić, Schürmann & Vallentin (2007) verified that the list of 10916 perfect lattices in dimension 8 found by Martinet and others is complete. It was proven by Riener (2006) that only 2408 of these 10916 perfect lattices in dimension 8 are actually extreme lattices.
Conway, J. H.; Sloane, N. J. A. (1989). "Errata: Low-Dimensional Lattices. III. Perfect Forms". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 426 (1871): 441. Bibcode:1989RSPSA.426..441C. doi:10.1098/rspa.1989.0134. JSTOR2398351.
Sikirić, Mathieu Dutour; Schürmann, Achill; Vallentin, Frank (2007), "Classification of eight-dimensional perfect forms", Electronic Research Announcements of the American Mathematical Society, 13 (3): 21–32, arXiv:math/0609388, doi:10.1090/S1079-6762-07-00171-0, ISSN1079-6762, MR2300003
Venkov, Boris (2001), "Réseaux et designs sphériques, Réseaux euclidiens, designs sphériques et formes modulaires", Monographie de l'Enseignement Mathématique, 37: 10–86