Number theory concept
In mathematics, a profinite integer is an element of the ring (sometimes pronounced as zee-hat or zed-hat)

where the inverse limit of the quotient rings
runs through all natural numbers
, partially ordered by divisibility. By definition, this ring is the profinite completion of the integers
. By the Chinese remainder theorem,
can also be understood as the direct product of rings

where the index
runs over all prime numbers, and
is the ring of p-adic integers. This group is important because of its relation to Galois theory, étale homotopy theory, and the ring of adeles. In addition, it provides a basic tractable example of a profinite group.
Construction
The profinite integers
can be constructed as the set of sequences
of residues represented as
such that
.
Pointwise addition and multiplication make it a commutative ring.
The ring of integers embeds into the ring of profinite integers by the canonical injection:
where
It is canonical since it satisfies the universal property of profinite groups that, given any profinite group
and any group homomorphism
, there exists a unique continuous group homomorphism
with
.
Using Factorial number system
Every integer
has a unique representation in the factorial number system as
where
for every
, and only finitely many of
are nonzero.
Its factorial number representation can be written as
.
In the same way, a profinite integer can be uniquely represented in the factorial number system as an infinite string
, where each
is an integer satisfying
.[1]
The digits
determine the value of the profinite integer mod
. More specifically, there is a ring homomorphism
sending
The difference of a profinite integer from an integer is that the "finitely many nonzero digits" condition is dropped, allowing for its factorial number representation to have infinitely many nonzero digits.
Using the Chinese Remainder theorem
Another way to understand the construction of the profinite integers is by using the Chinese remainder theorem. Recall that for an integer
with prime factorization
of non-repeating primes, there is a ring isomorphism
from the theorem. Moreover, any surjection
will just be a map on the underlying decompositions where there are induced surjections
since we must have
. It should be much clearer that under the inverse limit definition of the profinite integers, we have the isomorphism
with the direct product of p-adic integers.
Explicitly, the isomorphism is
by
where
ranges over all prime-power factors
of
, that is,
for some different prime numbers
.
Relations
Topological properties
The set of profinite integers has an induced topology in which it is a compact Hausdorff space, coming from the fact that it can be seen as a closed subset of the infinite direct product
which is compact with its product topology by Tychonoff's theorem. Note the topology on each finite group
is given as the discrete topology.
The topology on
can be defined by the metric,[1]
Since addition of profinite integers is continuous,
is a compact Hausdorff abelian group, and thus its Pontryagin dual must be a discrete abelian group.
In fact, the Pontryagin dual of
is the abelian group
equipped with the discrete topology (note that it is not the subset topology inherited from
, which is not discrete). The Pontryagin dual is explicitly constructed by the function[2]
where
is the character of the adele (introduced below)
induced by
.[3]
Relation with adeles
The tensor product
is the ring of finite adeles
of
where the symbol
means restricted product. That is, an element is a sequence that is integral except at a finite number of places.[4] There is an isomorphism
Applications in Galois theory and étale homotopy theory
For the algebraic closure
of a finite field
of order q, the Galois group can be computed explicitly. From the fact
where the automorphisms are given by the Frobenius endomorphism, the Galois group of the algebraic closure of
is given by the inverse limit of the groups
, so its Galois group is isomorphic to the group of profinite integers[5]
which gives a computation of the absolute Galois group of a finite field.
Relation with étale fundamental groups of algebraic tori
This construction can be re-interpreted in many ways. One of them is from étale homotopy type which defines the étale fundamental group
as the profinite completion of automorphisms
where
is an étale cover. Then, the profinite integers are isomorphic to the group
from the earlier computation of the profinite Galois group. In addition, there is an embedding of the profinite integers inside the étale fundamental group of the algebraic torus
since the covering maps come from the polynomial maps
from the map of commutative rings
sending
since
. If the algebraic torus is considered over a field
, then the étale fundamental group
contains an action of
as well from the fundamental exact sequence in étale homotopy theory.
Class field theory and the profinite integers
Class field theory is a branch of algebraic number theory studying the abelian field extensions of a field. Given the global field
, the abelianization of its absolute Galois group
is intimately related to the associated ring of adeles
and the group of profinite integers. In particular, there is a map, called the Artin map[6]
which is an isomorphism. This quotient can be determined explicitly as
giving the desired relation. There is an analogous statement for local class field theory since every finite abelian extension of
is induced from a finite field extension
.
See also
Notes
References
External links