The theorem appeared 1972 in a work on Fourier integral operators by Johannes Jisse Duistermaat and Lars Hörmander and since then there have been many generalizations which are known under the name propagation of singularities.[1][2]
Let be a properly supported pseudodifferential operator of class with a real principal symbol , which is homogeneous of degree in . Let be a distribution that satisfies the equation , then it follows that
Furthermore, is invariant under the Hamiltonian flow induced by .[3]
Bibliography
Hörmander, Lars (1972). Fourier integral operators. I. Acta Mathematica. Vol. 128. Institut Mittag-Leffler. pp. 79–183. doi:10.1007/BF02392052.
Duistermaat, Johannes Jisse; Hörmander, Lars (1972). Fourier integral operators. II. Acta Mathematica. Vol. 128. Institut Mittag-Leffler. pp. 183–269. doi:10.1007/BF02392165.
Shubin, Mikhail A. Pseudodifferential Operators and Spectral Theory. Springer Berlin, Heidelberg. ISBN978-3-540-41195-6.
^Duistermaat, Johannes Jisse; Hörmander, Lars (1972). Fourier integral operators. II. Acta Mathematica. Vol. 128. Institut Mittag-Leffler. pp. 183–269. doi:10.1007/BF02392165.
^Shubin, Mikhail A. Pseudodifferential Operators and Spectral Theory. Springer Berlin, Heidelberg. ISBN978-3-540-41195-6.
^Duistermaat, Johannes Jisse; Hörmander, Lars (1972). Fourier integral operators. II. Acta Mathematica. Vol. 128. Institut Mittag-Leffler. p. 196. doi:10.1007/BF02392165.