Quillen–Lichtenbaum conjecture Mathematical conjecture
In mathematics , the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by Quillen (1975 , p. 175), who was inspired by earlier conjectures of Lichtenbaum (1973) . Kahn (1997) and Rognes & Weibel (2000) proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields . Voevodsky , using some important results of Markus Rost , proved the Bloch–Kato conjecture , which implies the Quillen–Lichtenbaum conjecture for all primes.
Statement
The conjecture in Quillen's original form states that if A is a finitely-generated algebra over the integers and l is prime, then there is a spectral sequence analogous to the Atiyah–Hirzebruch spectral sequence , starting at
E
2
p
q
=
H
etale
p
(
Spec
A
[
ℓ
−
1
]
,
Z
ℓ
(
−
q
/
2
)
)
,
{\displaystyle E_{2}^{pq}=H_{\text{etale}}^{p}({\text{Spec }}A[\ell ^{-1}],Z_{\ell }(-q/2)),}
(which is understood to be 0 if q is odd )
and abutting to
K
−
p
−
q
A
⊗
Z
ℓ
{\displaystyle K_{-p-q}A\otimes Z_{\ell }}
for −p − q > 1 + dim A .
K -theory of the integers
Assuming the Quillen–Lichtenbaum conjecture and the Vandiver conjecture , the K -groups of the integers, K n (Z ), are given by:
0 if n = 0 mod 8 and n > 0, Z if n = 0
Z ⊕ Z /2 if n = 1 mod 8 and n > 1, Z /2 if n = 1.
Z /c k ⊕ Z /2 if n = 2 mod 8
Z /8d k if n = 3 mod 8
0 if n = 4 mod 8
Z if n = 5 mod 8
Z /c k if n = 6 mod 8
Z /4d k if n = 7 mod 8
where c k /d k is the Bernoulli number B 2k /k in lowest terms and n is 4k − 1 or 4k − 2 (Weibel 2005 ).
References
Grayson, Daniel R. (1994), "Weight filtrations in algebraic K-theory", in Jannsen, Uwe; Kleiman, Steven; Serre, Jean-Pierre (eds.), Motives (Seattle, WA, 1991) , Proc. Sympos. Pure Math., vol. 55, Providence, R.I.: American Mathematical Society , pp. 207– 237, ISBN 978-0-8218-1636-3 , MR 1265531
Kahn, Bruno (1997), The Quillen-Lichtenbaum conjecture at the prime 2 (PDF)
Lichtenbaum, Stephen (1973), "Values of zeta-functions, étale cohomology, and algebraic K-theory", in Bass, H. (ed.), Algebraic K-theory, II: Classical algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) , Lecture Notes in Mathematics, vol. 342, Berlin, New York: Springer-Verlag , pp. 489– 501, doi :10.1007/BFb0073737 , ISBN 978-3-540-06435-0 , MR 0406981
Quillen, Daniel (1975), "Higher algebraic K-theory", Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1 , Canad. Math. Congress, Montreal, Que., pp. 171– 176, MR 0422392
Rognes, J.; Weibel, Charles (2000), "Two-primary algebraic K-theory of rings of integers in number fields" , Journal of the American Mathematical Society , 13 (1): 1– 54, doi :10.1090/S0894-0347-99-00317-3 , hdl :10852/39337 , ISSN 0894-0347 , MR 1697095
Weibel, Charles (2005), "Algebraic K-theory of rings of integers in local and global fields", in Friedlander, Eric M. ; Grayson, Daniel R. (eds.), Handbook of K-theory. Vol. 1 , Berlin, New York: Springer-Verlag , pp. 139– 190, doi :10.1007/3-540-27855-9_5 , ISBN 978-3-540-23019-9 , MR 2181823