Rare event sampling is an umbrella term for a group of computer simulation methods intended to selectively sample 'special' regions of the dynamic space of systems which are unlikely to visit those special regions through brute-force simulation. A familiar example of a rare event in this context would be nucleation of a raindrop from over-saturated water vapour: although raindrops form every day, relative to the length and time scales defined by the motion of water molecules in the vapour phase, the formation of a liquid droplet is extremely rare.
If a system is out of thermodynamic equilibrium, then it is possible that there will be time-dependence in the rare event flux. In order to follow the time evolution of the probability of a rare event, it is necessary to maintain a steady current of trajectories into the target region of configurational space. SPRES is specifically designed for this eventuality and AMS is also at least formally valid for applications in which this is required.
In cases where a dissipative steady state obtains (i.e. the conditions for thermodynamic equilibrium are not met, but the rare event flux is nonetheless constant) then FFS and other methods can be appropriate as well as the typically more expensive full-nonequilibrium approaches.
Landscape methods
If the assumption of thermodynamic equilibrium is made, then there is no time-dependence in the rare event flux and a thermodynamic rather than statistical approach to the problem may be more appropriate. These methods are generally thought of separately to rare event methods, but may address the same problems. In these strategies, a free energy landscape (or an energy landscape, for small systems) is prepared. For a small system this landscape may be mapped entirely, while for a system with a larger number of degrees of freedom a projection onto some set of progress coordinates will still be required.
Having mapped the landscape, and making certain assumptions, transition-state theory can then be used to yield a description of the probabilities of paths within it. An example method for mapping landscapes is replica exchange simulation, which has the advantage when applied to rare event problems that piecewise correct trajectory fragments are generated in the course of the method, allowing some direct analysis of the dynamic behaviour even without generating the full landscape.
The Python toolset freshs.org as an example toolkit for distributing FFS and SPRES calculations to run sampling trials concurrently on parallel hardware or in a distributed manner across the network.
Pyretis,[16] an opensource python library to perform TIS (and RETIS) simulations. It is interfaced with common software for MD GROMACS and QM/MD CP2K simulations.
^Botev, Z. I.; Kroese, D. P. (2012). "Efficient Monte Carlo simulation via the generalized splitting method". Statistics and Computing. 22 (1): 1–16. doi:10.1007/s11222-010-9201-4. S2CID14970946.
^Schueller, G. I.; Pradlwarter, H. J.; Koutsourelakis, P. (2004). "A critical appraisal of reliability estimation procedures for high dimensions". Probabilistic Engineering Mechanics. 19 (4): 463–474. doi:10.1016/j.probengmech.2004.05.004.
^Au, S.K.; Beck, James L. (October 2001). "Estimation of small failure probabilities in high dimensions by subset simulation". Probabilistic Engineering Mechanics. 16 (4): 263–277. CiteSeerX10.1.1.131.1941. doi:10.1016/S0266-8920(01)00019-4.