Riemann xi function in the complex plane. The color of a point encodes the value of the function. Darker colors denote values closer to zero and hue encodes the value's argument.
Riemann's original lower-case "xi"-function, was renamed with an upper-case (Greek letter "Xi") by Edmund Landau. Landau's lower-case ("xi") is defined as[1]
where the sum extends over ρ, the non-trivial zeros of the zeta function, in order of .
This expansion plays a particularly important role in Li's criterion, which states that the Riemann hypothesis is equivalent to having λn > 0 for all positive n.
To ensure convergence in the expansion, the product should be taken over "matching pairs" of zeroes, i.e., the factors for a pair of zeroes of the form ρ and 1−ρ should be grouped together.
References
^ abLandau, Edmund (1974) [1909]. Handbuch der Lehre von der Verteilung der Primzahlen [Handbook of the Study of Distribution of the Prime Numbers] (Third ed.). New York: Chelsea. §70-71 and page 894.