Similarity invariance

In linear algebra, similarity invariance is a property exhibited by a function whose value is unchanged under similarities of its domain. That is, is invariant under similarities if where is a matrix similar to A. Examples of such functions include the trace, determinant, characteristic polynomial, and the minimal polynomial.

A more colloquial phrase that means the same thing as similarity invariance is "basis independence", since a matrix can be regarded as a linear operator, written in a certain basis, and the same operator in a new basis is related to one in the old basis by the conjugation , where is the transformation matrix to the new basis.

See also

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya