The spt function (smallest parts function) is a function in number theory that counts the sum of the number of smallest parts in each integer partition of a positive integer. It is related to the partition function .[ 1]
The first few values of spt(n ) are:
1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589 ... (sequence A092269 in the OEIS )
Example
For example, there are five partitions of 4 (with smallest parts underlined):
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1
These partitions have 1, 1, 2, 2, and 4 smallest parts, respectively. So spt(4) = 1 + 1 + 2 + 2 + 4 = 10.
Properties
Like the partition function, spt(n ) has a generating function . It is given by
S
(
q
)
=
∑
n
=
1
∞
s
p
t
(
n
)
q
n
=
1
(
q
)
∞
∑
n
=
1
∞
q
n
∏
m
=
1
n
−
1
(
1
−
q
m
)
1
−
q
n
{\displaystyle S(q)=\sum _{n=1}^{\infty }\mathrm {spt} (n)q^{n}={\frac {1}{(q)_{\infty }}}\sum _{n=1}^{\infty }{\frac {q^{n}\prod _{m=1}^{n-1}(1-q^{m})}{1-q^{n}}}}
where
(
q
)
∞
=
∏
n
=
1
∞
(
1
−
q
n
)
{\displaystyle (q)_{\infty }=\prod _{n=1}^{\infty }(1-q^{n})}
.
The function
S
(
q
)
{\displaystyle S(q)}
is related to a mock modular form . Let
E
2
(
z
)
{\displaystyle E_{2}(z)}
denote the weight 2 quasi-modular Eisenstein series and let
η
(
z
)
{\displaystyle \eta (z)}
denote the Dedekind eta function . Then for
q
=
e
2
π
i
z
{\displaystyle q=e^{2\pi iz}}
, the function
S
~
(
z
)
:=
q
−
1
/
24
S
(
q
)
−
1
12
E
2
(
z
)
η
(
z
)
{\displaystyle {\tilde {S}}(z):=q^{-1/24}S(q)-{\frac {1}{12}}{\frac {E_{2}(z)}{\eta (z)}}}
is a mock modular form of weight 3/2 on the full modular group
S
L
2
(
Z
)
{\displaystyle SL_{2}(\mathbb {Z} )}
with multiplier system
χ
η
−
1
{\displaystyle \chi _{\eta }^{-1}}
, where
χ
η
{\displaystyle \chi _{\eta }}
is the multiplier system for
η
(
z
)
{\displaystyle \eta (z)}
.
While a closed formula is not known for spt(n ), there are Ramanujan-like congruences including
s
p
t
(
5
n
+
4
)
≡
0
mod
(
5
)
{\displaystyle \mathrm {spt} (5n+4)\equiv 0\mod (5)}
s
p
t
(
7
n
+
5
)
≡
0
mod
(
7
)
{\displaystyle \mathrm {spt} (7n+5)\equiv 0\mod (7)}
s
p
t
(
13
n
+
6
)
≡
0
mod
(
13
)
.
{\displaystyle \mathrm {spt} (13n+6)\equiv 0\mod (13).}
References