Tree-like curve![]() In mathematics, particularly in differential geometry, a tree-like curve is a generic immersion with the property that removing any double point splits the curve into exactly two disjoint connected components. This property gives these curves a tree-like structure, hence their name. They were first systematically studied by Russian mathematicians Boris Shapiro and Vladimir Arnold in the 1990s.[1][2] For generic curves interpreted as the shadows of knots (that is, knot diagrams from which the over-under relations at each crossing have been erased), the tree-like curves can only be shadows of the unknot. As knot diagrams, these represent connected sums of figure-eight curves. Each figure-eight is unknotted and their connected sum remains unknotted. Random curves with few crossings are likely to be tree-like, and therefore random knot diagrams with few crossings are likely to be unknotted.[3] References
See also |
Portal di Ensiklopedia Dunia