Uniform polytope
In geometry , 2k 1 polytope is a uniform polytope in n dimensions (n = k + 4) constructed from the En Coxeter group . The family was named by their Coxeter symbol as 2k 1 by its bifurcating Coxeter-Dynkin diagram , with a single ring on the end of the 2-node sequence. It can be named by an extended Schläfli symbol {3,3,3k ,1 }.
Family members
The family starts uniquely as 6-polytopes , but can be extended backwards to include the 5-orthoplex (pentacross ) in 5 dimensions, and the 4-simplex (5-cell ) in 4 dimensions.
Each polytope is constructed from (n − 1)-simplex and 2k −1,1 (n − 1)-polytope facets, each having a vertex figure as an (n − 1)-demicube , {31,n −2,1 }.
The sequence ends with k = 6 (n = 10), as an infinite hyperbolic tessellation of 9-space.
The complete family of 2k 1 polytopes are:
5-cell : 201 , (5 tetrahedra cells)
Pentacross : 211 , (32 5-cell (201 ) facets)
221 , (72 5-simplex and 27 5-orthoplex (211 ) facets)
231 , (576 6-simplex and 56 221 facets)
241 , (17280 7-simplex and 240 231 facets)
251 , tessellates Euclidean 8-space (∞ 8-simplex and ∞ 241 facets)
261 , tessellates hyperbolic 9-space (∞ 9-simplex and ∞ 251 facets)
Elements
Gosset 2k 1 figures
n
2k 1
Petrie polygon projection
NameCoxeter-Dynkin diagram
Facets
Elements
2k −1,1 polytope
(n − 1)-simplex
Vertices
Edges
Faces
Cells
4-faces
5-faces
6-faces
7-faces
4
201
5-cell {32,0,1 }
--
5{33 }
5
10
10
5
5
211
pentacross {32,1,1 }
16{32,0,1 }
16{34 }
10
40
80
80
32
6
221
2 21 polytope {32,2,1 }
27{32,1,1 }
72{35 }
27
216
720
1080
648
99
7
231
2 31 polytope {32,3,1 }
56{32,2,1 }
576{36 }
126
2016
10080
20160
16128
4788
632
8
241
2 41 polytope {32,4,1 }
240{32,3,1 }
17280{37 }
2160
69120
483840
1209600
1209600
544320
144960
17520
9
251
2 51 honeycomb (8-space tessellation) {32,5,1 }
∞{32,4,1 }
∞{38 }
∞
10
261
2 61 honeycomb (9-space tessellation) {32,6,1 }
∞{32,5,1 }
∞{39 }
∞
See also
References
A. Boole Stott (1910). "Geometrical deduction of semiregular from regular polytopes and space fillings" (PDF) . Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam . XI (1). Amsterdam: Johannes Müller. Archived from the original (PDF) on 29 April 2025.
P. H. Schoute (1911). "Analytical treatment of the polytopes regularly derived from the regular polytopes" (PDF) . Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam . Section I. XI (3). Amsterdam: Johannes Müller. Archived from the original (PDF) on 22 January 2025.
P. H. Schoute (1913). "Analytical treatment of the polytopes regularly derived from the regular polytopes" (PDF) . Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam . Sections II, III, IV. XI (5). Amsterdam: Johannes Müller. Archived from the original (PDF) on 22 February 2025.
H. S. M. Coxeter : Regular and Semi-Regular Polytopes, Part I, Mathematische Zeitschrift, Springer, Berlin, 1940
N.W. Johnson : The Theory of Uniform Polytopes and Honeycombs , Ph.D. Dissertation, University of Toronto, 1966
H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part II, Mathematische Zeitschrift, Springer, Berlin, 1985
H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part III, Mathematische Zeitschrift, Springer, Berlin, 1988
External links